Glycolytic pathway affects differentiation of human monocytes to regulatory macrophages

Hiroaki Suzuki, Tadakazu Hisamatsu, Sayako Chiba, Kiyoto Mori, Mina T. Kitazume, Katsuyoshi Shimamura, Nobuhiro Nakamoto, Katsuyoshi Matsuoka, Hirotoshi Ebinuma, Makoto Naganuma, Takanori Kanai

Research output: Contribution to journalArticlepeer-review

61 Citations (Scopus)


Cellular metabolic state and individual metabolites have been reported to regulate the functional phenotype of immune cells. Cytokine production by regulatory and inflammatory macrophages is thought to mainly involve fatty acid oxidation and glycolysis, respectively, which fuel mitochondrial oxidative phosphorylation. However, the association between metabolic pathways and the acquisition of specific macrophage phenotypes remains unclear. This study assessed the relationship between glycolysis and the differentiation of regulatory macrophages. Human monocytes derived from peripheral blood were cultured in vitro in the presence of macrophage colony-stimulating factor to yield regulatory macrophages (M-Mφs). M-Mφs had a regulatory macrophage phenotype and produced substantial IL-10 following stimulation with lipopolysaccharide. To analyze the role of glycolysis, glycolysis inhibitors (2-deoxy- d-glucose or dichloroacetate) were added during M-Mφ differentiation. These cells cultured with glycolysis inhibitors produced significantly lower amounts of IL-10, but produced significantly higher amounts of IL-6 compared to M-Mφs differentiated without glycolysis inhibitors. Such phenotypic change of M-Mφs differentiated with glycolysis inhibitors was associated with the alteration of the gene expression pattern related to macrophage differentiation, such as CSF1, MMP9 and VEGFA. M-Mφs differentiated with glycolysis inhibitors seemed to retain plasticity to become IL-10 producing cells. Furthermore, increased level of pyruvate in culture medium was found to partially reverse the effects of glycolysis inhibitors on cytokine production of M-Mφs. These results indicate the importance of glycolytic pathway in macrophage differentiation to a regulatory phenotype, and pyruvate may be one of the key metabolites in this process.

Original languageEnglish
Pages (from-to)18-27
Number of pages10
JournalImmunology Letters
Publication statusPublished - 2016 Aug 1


  • Differentiation
  • Glycolytic pathway
  • Human monocyte
  • Regulatory macrophage

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology


Dive into the research topics of 'Glycolytic pathway affects differentiation of human monocytes to regulatory macrophages'. Together they form a unique fingerprint.

Cite this