Ground state modulations in the CPN-1 model

Antonino Flachi, Guglielmo Fucci, Muneto Nitta, Satoshi Takada, Ryosuke Yoshii

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)


In this work we examine a system consisting of a confined one-dimensional arrangement of atoms that we describe by using the 2-dimensional CPN-1 model, restricted to an interval and at finite temperature. We develop a method to obtain the bulk and boundary parts of the one-loop effective action as a function of the effective mass of the fluctuations. The formalism has the advantage of allowing for a systematic analysis of a large class of boundary conditions and to model the (adiabatic) response of the ground state to changes in the boundary conditions. In the case of periodic boundary conditions, we find that inhomogeneous phases are disfavored for intervals of large size. Away from periodic boundary conditions, our numerical results show that the ground state has a generic crystal-like structure that can be modulated by variations of the boundary conditions. The results presented here could be relevant for experimental implementations of nonlinear sigma models and could be tested by lattice numerical simulations.

Original languageEnglish
Article number085006
JournalPhysical Review D
Issue number8
Publication statusPublished - 2019 Oct 16

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)


Dive into the research topics of 'Ground state modulations in the CPN-1 model'. Together they form a unique fingerprint.

Cite this