Highly sensitive and low-crosstalk angular acceleration sensor using mirror-symmetric liquid ring channels and MEMS piezoresistive cantilevers

Hidetoshi Takahashi, Tetsuo Kan, Akihito Nakai, Tomoyuki Takahata, Takanori Usami, Isao Shimoyama

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)

Abstract

This paper describes an angular acceleration sensor that uses liquid ring channels and piezoresistive cantilevers. The detection of fluidic rotation has attracted attention as a sensing principle for angular acceleration due to the simple structure and potentially low power consumption of devices that use said principle. Although the existing angular acceleration sensors that use this sensing principle have the potential for high sensitivity to angular acceleration about the target axis, crosstalk is an issue—specifically, crosstalk with angular accelerations about other axes and with linear acceleration. Here, we propose an angular acceleration sensor that uses a MEMS piezoresistive cantilever as the sensing element and two mirror-symmetric ring channels. This mirror symmetry cancels out the signals due to accelerations about the other axes, while the signal for the angular acceleration about the target axis is doubled. The experimental results show that the sensitivity to other axial angular accelerations and linear acceleration is sufficiently small. The obtained sensitivity for the angular acceleration is as high as 3.1 × 10 −4 (rad/s 2 ) -1 , similar to theoretical predictions. This value for the sensitivity is maintained over a range of frequencies from 0.1 Hz to 100 Hz. Therefore, the proposed sensor is suitable for practical angular acceleration detection applications.

Original languageEnglish
Pages (from-to)39-47
Number of pages9
JournalSensors and Actuators, A: Physical
Volume287
DOIs
Publication statusPublished - 2019 Mar 1
Externally publishedYes

Keywords

  • Angular acceleration sensor
  • Piezoresistive cantilever
  • Ring flow channel

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Instrumentation
  • Condensed Matter Physics
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Highly sensitive and low-crosstalk angular acceleration sensor using mirror-symmetric liquid ring channels and MEMS piezoresistive cantilevers'. Together they form a unique fingerprint.

Cite this