TY - JOUR
T1 - HNK-1 glycan functions as a tumor suppressor for astrocytic tumor
AU - Suzuki-Anekoji, Misa
AU - Suzuki, Masami
AU - Kobayashi, Tatsuya
AU - Sato, Yoshiko
AU - Nakayama, Jun
AU - Suzuki, Atsushi
AU - Bao, Xingfeng
AU - Angata, Kiyohiko
AU - Fukuda, Minoru
PY - 2011/9/16
Y1 - 2011/9/16
N2 - Astrocytic tumor is the most prevalent primary brain tumor. However, the role of cell surface carbohydrates in astrocytic tumor invasion is not known. In a previous study, we showed that polysialic acid facilitates astrocytic tumor invasion and thereby tumor progression. Here, we examined the role of HNK-1 glycan in astrocytic tumor invasion. A Kaplan-Meier analysis of 45 patients revealed that higher HNK-1 expression levels were positively associated with increased survival of patients. To determine the role of HNK-1 glycan, we transfected C6 glioma cells, which lack HNK-1 glycan expression, with β1,3-glucuronyltransferase-P cDNA, generating HNK-1-positive cells. When these cells were injected into the mouse brain, the resultant tumors were 60% smaller than tumors emerging from injection of the mock-transfected HNK-1-negative C6 cells. HNK-1-positive C6 cells also grew more slowly than mock-transfected C6 cells in anchorage-dependent and anchorage-independent assays. C6-HNK-1 cells migrated well after treatment of anti-β1 integrin antibody, whereas the same treatment inhibited cell migration of mock-transfected C6 cells. Similarly, α-dystroglycan containingHNK-1glycan is different from those containing the laminin-binding glycans, supporting the above conclusion that C6-HNK-1 cells migrate independently from β1-integrin-mediated signaling. Moreover, HNK-1-positive cells exhibited attenuated activation of ERK 1/2 compared with mock-transfected C6 cells, whereas focal adhesion kinase activation was equivalent in both cell types. Overall, these results indicate that HNK-1 glycan functions as a tumor suppressor.
AB - Astrocytic tumor is the most prevalent primary brain tumor. However, the role of cell surface carbohydrates in astrocytic tumor invasion is not known. In a previous study, we showed that polysialic acid facilitates astrocytic tumor invasion and thereby tumor progression. Here, we examined the role of HNK-1 glycan in astrocytic tumor invasion. A Kaplan-Meier analysis of 45 patients revealed that higher HNK-1 expression levels were positively associated with increased survival of patients. To determine the role of HNK-1 glycan, we transfected C6 glioma cells, which lack HNK-1 glycan expression, with β1,3-glucuronyltransferase-P cDNA, generating HNK-1-positive cells. When these cells were injected into the mouse brain, the resultant tumors were 60% smaller than tumors emerging from injection of the mock-transfected HNK-1-negative C6 cells. HNK-1-positive C6 cells also grew more slowly than mock-transfected C6 cells in anchorage-dependent and anchorage-independent assays. C6-HNK-1 cells migrated well after treatment of anti-β1 integrin antibody, whereas the same treatment inhibited cell migration of mock-transfected C6 cells. Similarly, α-dystroglycan containingHNK-1glycan is different from those containing the laminin-binding glycans, supporting the above conclusion that C6-HNK-1 cells migrate independently from β1-integrin-mediated signaling. Moreover, HNK-1-positive cells exhibited attenuated activation of ERK 1/2 compared with mock-transfected C6 cells, whereas focal adhesion kinase activation was equivalent in both cell types. Overall, these results indicate that HNK-1 glycan functions as a tumor suppressor.
UR - http://www.scopus.com/inward/record.url?scp=80052773878&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80052773878&partnerID=8YFLogxK
U2 - 10.1074/jbc.M111.245886
DO - 10.1074/jbc.M111.245886
M3 - Article
C2 - 21784847
AN - SCOPUS:80052773878
SN - 0021-9258
VL - 286
SP - 32824
EP - 32833
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 37
ER -