Identification of small-molecule inhibitors of nucleoside triphosphate hydrolase in Toxoplasma gondii

Takashi Asai, Tsutomu Takeuchi, Jeff Diffenderfer, L. David Sibley

Research output: Contribution to journalArticlepeer-review

38 Citations (Scopus)

Abstract

Approximately 150,000 small-molecule compounds were tested by a robotic screening assay for their ability to inhibit nucleoside triphosphate hydrolase (NTPase), a novel enzyme of the tachyzoite form of Toxoplasma gondii. Five unrelated species of compounds were found to inhibit the activities of both NTPase isoforms (NTPase isoform I [NTPase-I] and NTPase-II). The 50% inhibitory concentrations (IC50s) ranged from 0.1 to 20 μM, and in general, the IC50s were similar for both NTPase isoforms. However, the activity of NTPase-I was 20 times more sensitive than the activity of NTPase-II to one of the inhibitors: 9-hydroxy-10-(pentachlorophenoxy)stearic acid. The five compounds identified also prevented tachyzoite replication in vitro, with IC50s ranging from ∼7 to ≥50 μM. The most effective of these initial compounds, 2-phenylthio-indole, was used to identify six additional, structurally related compounds, which were tested for their inhibitory effects on enzyme activities and tachyzoite replication. Surprisingly, these compounds were competitive inhibitors of NTPase-I but noncompetitive inhibitors of NTPase-II. Modifications to the indole and phenol rings resulted in alterations of activity, thus providing insight into the structural features that are important for inhibition of T. gondii NTPases.

Original languageEnglish
Pages (from-to)2393-2399
Number of pages7
JournalAntimicrobial Agents and Chemotherapy
Volume46
Issue number8
DOIs
Publication statusPublished - 2002
Externally publishedYes

ASJC Scopus subject areas

  • Pharmacology
  • Pharmacology (medical)
  • Infectious Diseases

Fingerprint

Dive into the research topics of 'Identification of small-molecule inhibitors of nucleoside triphosphate hydrolase in Toxoplasma gondii'. Together they form a unique fingerprint.

Cite this