TY - JOUR
T1 - Impact of the cerebrospinal fluid-mask algorithm on the diagnostic performance of 123I-Ioflupane SPECT
T2 - an investigation of parkinsonian syndromes
AU - Iwabuchi, Yu
AU - Nakahara, Tadaki
AU - Kameyama, Masashi
AU - Matsusaka, Yohji
AU - Minami, Yasuhiro
AU - Ito, Daisuke
AU - Tabuchi, Hajime
AU - Yamada, Yoshitake
AU - Jinzaki, Masahiro
N1 - Funding Information:
The authors thank the staff of the Division of Nuclear Medicine at the Department of Radiology for their valuable support. This work was supported by JSPS KAKENHI Grant Number JP19K17243.
Publisher Copyright:
© 2019, The Author(s).
PY - 2019
Y1 - 2019
N2 - Background: A cerebrospinal fluid (CSF)-mask algorithm has been developed to reduce the adverse influence of CSF-low-counts on the diagnostic utility of the specific binding ratio (SBR) index calculated with Southampton method. We assessed the effect of the CSF-mask algorithm on the diagnostic performance of the SBR index for parkinsonian syndromes (PS), including Parkinson’s disease, and the influence of cerebral ventricle dilatation on the CSF-mask algorithm. Methods: We enrolled 163 and 158 patients with and without PS, respectively. Both the conventional SBR (non-CSF-mask) and SBR corrected with the CSF-mask algorithm (CSF-mask) were calculated from 123I-Ioflupane single-photon emission computed tomography (SPECT) images of these patients. We compared the diagnostic performance of the corresponding indices and evaluated whether the effect of the CSF-mask algorithm varied according to the extent of ventricle dilatation, as assessed with the Evans index (EI). A receiver-operating characteristics (ROC) analysis was used for statistical analyses. Results: ROC analyses demonstrated that the CSF-mask algorithm performed better than the non-CSF-mask (no correction, area under the curve [AUC] = 0.917 [95% confidence interval (CI) 0.887–0.947] vs. 0.895 [95% CI 0.861–0.929], p < 0.001; attenuation correction, AUC = 0.930 [95% CI 0.902–0.957] vs. 0.903 [95% CI 0.870–0.936], p < 0.001). When not corrected for attenuation, no significant difference in the AUC was observed in the low EI group between the non-CSF-mask and CSF-mask algorithms (0.927 [95% CI 0.877–0.978] vs. 0.942 [95% CI 0.898–0.986], p = 0.11); in the middle and high EI groups, the CSF-mask algorithm performed better than the non-CSF-mask algorithm (middle EI group, AUC = 0.894 [95% CI 0.825–0.963] vs. 0.872 [95% CI 0.798–0.947], p < 0.05; high EI group, AUC = 0.931 [95% CI 0.883–0.978] vs. 0.900 [95% CI 0.840–0.961], p < 0.01). When corrected for attenuation, significant differences in the AUC were observed in all three EI groups (low EI group, AUC = 0.961 [95% CI 0.924–0.998] vs. 0.942 [95% CI 0.895–0.988], p < 0.05; middle EI group, AUC = 0.905 [95% CI 0.843–0.968] vs. 0.872 [95% CI 0.800–0.944], p < 0.005; high EI group, AUC = 0.954 [95% CI 0.917–0.991] vs. 0.917 [95% CI 0.862–0.973], p < 0.005). Conclusion: The CSF-mask algorithm improved the performance of the SBR index in informing the diagnosis of PS, especially in cases with ventricle dilatation.
AB - Background: A cerebrospinal fluid (CSF)-mask algorithm has been developed to reduce the adverse influence of CSF-low-counts on the diagnostic utility of the specific binding ratio (SBR) index calculated with Southampton method. We assessed the effect of the CSF-mask algorithm on the diagnostic performance of the SBR index for parkinsonian syndromes (PS), including Parkinson’s disease, and the influence of cerebral ventricle dilatation on the CSF-mask algorithm. Methods: We enrolled 163 and 158 patients with and without PS, respectively. Both the conventional SBR (non-CSF-mask) and SBR corrected with the CSF-mask algorithm (CSF-mask) were calculated from 123I-Ioflupane single-photon emission computed tomography (SPECT) images of these patients. We compared the diagnostic performance of the corresponding indices and evaluated whether the effect of the CSF-mask algorithm varied according to the extent of ventricle dilatation, as assessed with the Evans index (EI). A receiver-operating characteristics (ROC) analysis was used for statistical analyses. Results: ROC analyses demonstrated that the CSF-mask algorithm performed better than the non-CSF-mask (no correction, area under the curve [AUC] = 0.917 [95% confidence interval (CI) 0.887–0.947] vs. 0.895 [95% CI 0.861–0.929], p < 0.001; attenuation correction, AUC = 0.930 [95% CI 0.902–0.957] vs. 0.903 [95% CI 0.870–0.936], p < 0.001). When not corrected for attenuation, no significant difference in the AUC was observed in the low EI group between the non-CSF-mask and CSF-mask algorithms (0.927 [95% CI 0.877–0.978] vs. 0.942 [95% CI 0.898–0.986], p = 0.11); in the middle and high EI groups, the CSF-mask algorithm performed better than the non-CSF-mask algorithm (middle EI group, AUC = 0.894 [95% CI 0.825–0.963] vs. 0.872 [95% CI 0.798–0.947], p < 0.05; high EI group, AUC = 0.931 [95% CI 0.883–0.978] vs. 0.900 [95% CI 0.840–0.961], p < 0.01). When corrected for attenuation, significant differences in the AUC were observed in all three EI groups (low EI group, AUC = 0.961 [95% CI 0.924–0.998] vs. 0.942 [95% CI 0.895–0.988], p < 0.05; middle EI group, AUC = 0.905 [95% CI 0.843–0.968] vs. 0.872 [95% CI 0.800–0.944], p < 0.005; high EI group, AUC = 0.954 [95% CI 0.917–0.991] vs. 0.917 [95% CI 0.862–0.973], p < 0.005). Conclusion: The CSF-mask algorithm improved the performance of the SBR index in informing the diagnosis of PS, especially in cases with ventricle dilatation.
KW - CSF-mask
KW - DAT SPECT
KW - I-FP-CIT
KW - I-Ioflupane
KW - Southampton method
KW - Specific binding ratio
UR - http://www.scopus.com/inward/record.url?scp=85071956301&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85071956301&partnerID=8YFLogxK
U2 - 10.1186/s13550-019-0558-x
DO - 10.1186/s13550-019-0558-x
M3 - Article
AN - SCOPUS:85071956301
SN - 2191-219X
VL - 9
JO - EJNMMI Research
JF - EJNMMI Research
IS - 1
M1 - 85
ER -