TY - JOUR
T1 - Impairment of heme biosynthesis induces short circadian period in body temperature rhythms in mice
AU - Iwadate, Reiko
AU - Satoh, Yoko
AU - Watanabe, Yukino
AU - Kawai, Hiroshi
AU - Kudo, Naomi
AU - Kawashima, Yoichi
AU - Mashino, Tadahiko
AU - Mitsumoto, Atsushi
PY - 2012/7/1
Y1 - 2012/7/1
N2 - It has been demonstrated that the function of mammalian clock gene transcripts is controlled by the binding of heme in vitro. To examine the effects of heme on biological rhythms in vivo, we measured locomotor activity (LA) and core body temperature (T b) in a mouse model of porphyria with impaired heme biosynthesis by feeding mice a griseofulvin (GF)-containing diet. Mice fed with a 2.0% GF-containing diet (GF2.0) transiently exhibited phase advance or phase advance-like phenomenon by 1-3 h in terms of the biological rhythms of T b or LA, respectively (both, P < 0.05) while mice were kept under conditions of a light/dark cycle (12 h:12 h). We also observed a transient, ~0.3 h shortening of the period of circadian T b rhythms in mice kept under conditions of constant darkness (P < 0.01). Interestingly, the observed duration of abnormal circadian rhythms in GF2.0 mice lasted between 1 and 3 wk after the onset of GF ingestion; this finding correlated well with the extent of impairment of heme biosynthesis. When we examined the effects of therapeutic agents for acute porphyria, heme, and hypertonic glucose on the pathological status of GF2.0 mice, it was found that the intraperitoneal administration of heme (10 mg·kg -1·day -1) or glucose (9 g·kg -1·day -1) for 7 days partially reversed (50%) increases in urinary δ-aminolevulinic acids levels associated with acute porphyria. Treatment with heme, but not with glucose, suppressed the phase advance (-like phenomenon) in the diurnal rhythms (P < 0.05) and restored the decrease of heme (P < 0.01) in GF2.0 mice. These results suggest that impairments of heme biosynthesis, in particular a decrease in heme, may affect phase and period of circadian rhythms in animals.
AB - It has been demonstrated that the function of mammalian clock gene transcripts is controlled by the binding of heme in vitro. To examine the effects of heme on biological rhythms in vivo, we measured locomotor activity (LA) and core body temperature (T b) in a mouse model of porphyria with impaired heme biosynthesis by feeding mice a griseofulvin (GF)-containing diet. Mice fed with a 2.0% GF-containing diet (GF2.0) transiently exhibited phase advance or phase advance-like phenomenon by 1-3 h in terms of the biological rhythms of T b or LA, respectively (both, P < 0.05) while mice were kept under conditions of a light/dark cycle (12 h:12 h). We also observed a transient, ~0.3 h shortening of the period of circadian T b rhythms in mice kept under conditions of constant darkness (P < 0.01). Interestingly, the observed duration of abnormal circadian rhythms in GF2.0 mice lasted between 1 and 3 wk after the onset of GF ingestion; this finding correlated well with the extent of impairment of heme biosynthesis. When we examined the effects of therapeutic agents for acute porphyria, heme, and hypertonic glucose on the pathological status of GF2.0 mice, it was found that the intraperitoneal administration of heme (10 mg·kg -1·day -1) or glucose (9 g·kg -1·day -1) for 7 days partially reversed (50%) increases in urinary δ-aminolevulinic acids levels associated with acute porphyria. Treatment with heme, but not with glucose, suppressed the phase advance (-like phenomenon) in the diurnal rhythms (P < 0.05) and restored the decrease of heme (P < 0.01) in GF2.0 mice. These results suggest that impairments of heme biosynthesis, in particular a decrease in heme, may affect phase and period of circadian rhythms in animals.
KW - Core body temperature
KW - Phase advance
KW - Porphyria
KW - Resting temperature
KW - δ-aminolevulinic acid
UR - http://www.scopus.com/inward/record.url?scp=84863502985&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863502985&partnerID=8YFLogxK
U2 - 10.1152/ajpregu.00019.2011
DO - 10.1152/ajpregu.00019.2011
M3 - Article
C2 - 22552790
AN - SCOPUS:84863502985
SN - 0363-6119
VL - 303
SP - R8-R18
JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
IS - 1
ER -