TY - JOUR
T1 - In vitro selection of DNA aptamers that block toxic effects of AGE on cultured retinal pericytes
AU - Higashimoto, Yuichiro
AU - Yamagishi, Sho ichi
AU - Nakamura, Kazuo
AU - Matsui, Takanori
AU - Takeuchi, Masayoshi
AU - Noguchi, Masato
AU - Inoue, Hiroyoshi
N1 - Funding Information:
This work was supported in part by Grants of Collaboration with Venture Companies Project from the Ministry of Education, Culture, Sports, Science and Technology, Japan (S. Yamagishi) and Creation and Support Program for Startups for Universities from Japan Science and Technology Agency, Japan (H. Inoue). There is no conflict of interest.
PY - 2007/7
Y1 - 2007/7
N2 - Microvessels are composed of endothelial cells and pericytes. We have previously shown that advanced glycation end products (AGE) not only inhibit DNA synthesis but also induce apoptosis in cultured retinal pericytes, thereby being involved in pericyte loss, the earliest histopathological hallmark of diabetic retinopathy. Since pericytes play a central role in the maintenance of microvascular homeostasis in the retina, blockade of the harmful effects of AGE on retinal pericytes may become a novel therapeutic strategy for the treatment of diabetic retinopathy. In this study, we selected DNA aptamers directed against AGE in vitro and then examined their cytoprotective effects on AGE-exposed retinal pericytes. We identified 15 DNA aptamers directed against AGE-human serum albumin using combinatorial chemistry techniques in vitro. Structural analysis revealed that they had bulge-loop structures with cytosine-rich sequences. All of the aptamers, but not non-binding control aptamers, were found to inhibit the AGE-induced decrease in DNA synthesis as well as apoptotic cell death in pericytes. Among the selected aptamers, the clone 9 aptamer completely blocked the toxic effects of AGE, and its dissociation constant was 1 μmol/L. These results indicate that DNA aptamers are a useful tool for inhibiting the cytotoxic effects of AGE on cultured retinal pericytes. Our study suggests that blockade of the AGE effects by DNA aptamers may lead to a novel therapeutic strategy for the treatment of diabetic retinopathy.
AB - Microvessels are composed of endothelial cells and pericytes. We have previously shown that advanced glycation end products (AGE) not only inhibit DNA synthesis but also induce apoptosis in cultured retinal pericytes, thereby being involved in pericyte loss, the earliest histopathological hallmark of diabetic retinopathy. Since pericytes play a central role in the maintenance of microvascular homeostasis in the retina, blockade of the harmful effects of AGE on retinal pericytes may become a novel therapeutic strategy for the treatment of diabetic retinopathy. In this study, we selected DNA aptamers directed against AGE in vitro and then examined their cytoprotective effects on AGE-exposed retinal pericytes. We identified 15 DNA aptamers directed against AGE-human serum albumin using combinatorial chemistry techniques in vitro. Structural analysis revealed that they had bulge-loop structures with cytosine-rich sequences. All of the aptamers, but not non-binding control aptamers, were found to inhibit the AGE-induced decrease in DNA synthesis as well as apoptotic cell death in pericytes. Among the selected aptamers, the clone 9 aptamer completely blocked the toxic effects of AGE, and its dissociation constant was 1 μmol/L. These results indicate that DNA aptamers are a useful tool for inhibiting the cytotoxic effects of AGE on cultured retinal pericytes. Our study suggests that blockade of the AGE effects by DNA aptamers may lead to a novel therapeutic strategy for the treatment of diabetic retinopathy.
KW - AGE
KW - DNA aptamer
KW - Diabetic retinopathy
KW - Pericyte loss
UR - http://www.scopus.com/inward/record.url?scp=34249815197&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34249815197&partnerID=8YFLogxK
U2 - 10.1016/j.mvr.2007.04.001
DO - 10.1016/j.mvr.2007.04.001
M3 - Article
C2 - 17493639
AN - SCOPUS:34249815197
SN - 0026-2862
VL - 74
SP - 65
EP - 69
JO - Microvascular Research
JF - Microvascular Research
IS - 1
ER -