Increased L1 retrotransposition in the neuronal genome in schizophrenia

Miki Bundo, Manabu Toyoshima, Yohei Okada, Wado Akamatsu, Junko Ueda, Taeko Nemoto-Miyauchi, Fumiko Sunaga, Michihiro Toritsuka, Daisuke Ikawa, Akiyoshi Kakita, Motoichiro Kato, Kiyoto Kasai, Toshifumi Kishimoto, Hiroyuki Nawa, Hideyuki Okano, Takeo Yoshikawa, Tadafumi Kato, Kazuya Iwamoto

Research output: Contribution to journalArticlepeer-review

243 Citations (Scopus)


Recent studies indicate that long interspersed nuclear element-1 (L1) are mobilized in the genome of human neural progenitor cells and enhanced in Rett syndrome and ataxia telangiectasia. However, whether aberrant L1 retrotransposition occurs in mental disorders is unknown. Here, we report high L1 copy number in schizophrenia. Increased L1 was demonstrated in neurons from prefrontal cortex of patients and in induced pluripotent stem (iPS) cell-derived neurons containing 22q11 deletions. Whole-genome sequencing revealed brain-specific L1 insertion in patients localized preferentially to synapse- and schizophrenia-related genes. To study the mechanism of L1 transposition, we examined perinatal environmental risk factors for schizophrenia in animal models and observed an increased L1 copy number after immune activation by poly-I:C or epidermal growth factor. These findings suggest that hyperactive retrotransposition of L1 in neurons triggered by environmental and/or genetic risk factors may contribute to the susceptibility and pathophysiology of schizophrenia.

Original languageEnglish
Pages (from-to)306-313
Number of pages8
Issue number2
Publication statusPublished - 2014 Jan 22

ASJC Scopus subject areas

  • Neuroscience(all)


Dive into the research topics of 'Increased L1 retrotransposition in the neuronal genome in schizophrenia'. Together they form a unique fingerprint.

Cite this