TY - JOUR
T1 - Influence of backscatter radiation on cranial reconstruction implants
AU - Sakamoto, Yoshiaki
AU - Koike, Naoyoshi
AU - Takei, Hideyuki
AU - Ohno, Mari
AU - Miwa, Tomoru
AU - Yoshida, Kazunari
AU - Shigematsu, Naoyuki
AU - Kishi, Kazuo
N1 - Publisher Copyright:
© 2016 The Authors. Published by the British Institute of Radiology.
PY - 2017
Y1 - 2017
N2 - Objective: We aimed to evaluate backscatter dose variations in different cranial bone implant materials in an experimental model designed to simulate postoperative radiotherapy. Methods: We assessed the radiation backscatter doses associated with sheet- and mesh-type titanium plates and hydroxyapatite (HAP) samples (porosity: 35%, 50% and 85%). The samples were irradiated with 6- and 10-MV photon beams from a linear accelerator. Measurements were obtained using an ionization chamber and radiochromic films cut from the same batch. Results: At 6MV, the titanium sheet showed the highest peak for backscattered radiation, followed by (in decreasing order) HAP30%, HAP50%, titanium mesh and HAP85%. At 10MV, HAP30% showed the highest peak, followed by HAP50%, titanium sheet, titanium mesh and HAP85%. The peaks were at different depths in the titanium and HAP samples. The thickness of the human scalp is approximately 7mm; therefore, measurements were obtained 0-7mm above the implants to assess the likely dose on the scalp. A comparison of the maximum dose on the scalp showed the titanium sheet had the highest dose at both 6 and 10MV. Conclusion: The backscatter dose differed with the density of the material and the backscatter depth was different for each material. Advances in knowledge: Ulcer formation due to radiotherapy after brain tumour depends on not only radiation but also the implant material. Therefore, the density and type of implant material should be considered when planning radiotherapy and selecting bone reconstruction materials.
AB - Objective: We aimed to evaluate backscatter dose variations in different cranial bone implant materials in an experimental model designed to simulate postoperative radiotherapy. Methods: We assessed the radiation backscatter doses associated with sheet- and mesh-type titanium plates and hydroxyapatite (HAP) samples (porosity: 35%, 50% and 85%). The samples were irradiated with 6- and 10-MV photon beams from a linear accelerator. Measurements were obtained using an ionization chamber and radiochromic films cut from the same batch. Results: At 6MV, the titanium sheet showed the highest peak for backscattered radiation, followed by (in decreasing order) HAP30%, HAP50%, titanium mesh and HAP85%. At 10MV, HAP30% showed the highest peak, followed by HAP50%, titanium sheet, titanium mesh and HAP85%. The peaks were at different depths in the titanium and HAP samples. The thickness of the human scalp is approximately 7mm; therefore, measurements were obtained 0-7mm above the implants to assess the likely dose on the scalp. A comparison of the maximum dose on the scalp showed the titanium sheet had the highest dose at both 6 and 10MV. Conclusion: The backscatter dose differed with the density of the material and the backscatter depth was different for each material. Advances in knowledge: Ulcer formation due to radiotherapy after brain tumour depends on not only radiation but also the implant material. Therefore, the density and type of implant material should be considered when planning radiotherapy and selecting bone reconstruction materials.
UR - http://www.scopus.com/inward/record.url?scp=85011695268&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85011695268&partnerID=8YFLogxK
U2 - 10.1259/bjr.20150537
DO - 10.1259/bjr.20150537
M3 - Article
C2 - 27925774
AN - SCOPUS:85011695268
SN - 0007-1285
VL - 90
JO - British Journal of Radiology
JF - British Journal of Radiology
IS - 1070
M1 - 20150537
ER -