Influence of ethanol blending on knocking in a lean burn SI engine

Kazuki Kaneko, Yuki Yasutake, Takeshi Yokomori, Norimasa Iida

Research output: Contribution to journalConference articlepeer-review

4 Citations (Scopus)

Abstract

Lean burn is one method for improving thermal efficiency in spark ignition (SI) engines. Suppression of knocking provides higher thermal efficiency, and ethanol blending is considered an effective way to suppress knocking due to its high octane and high latent heat of evaporation. We investigate the effect of ethanol blending on knocking in an SI engine under lean operating conditions. The Livengood-Wu (LW) integral was performed based on ignition delay duration estimated from a zero-dimensional detailed chemical reaction calculation with pressure and temperature histories. Knocking was suppressed and thermal efficiency increased with ethanol-gasoline blending fuel, even at 0.5 equivalence ratio. Decrease in unburned gas temperature by latent heat of evaporation had a comparable influence on knocking suppression, which was supported by LW integral analysis.

Original languageEnglish
JournalSAE Technical Papers
Issue numberDecember
DOIs
Publication statusPublished - 2019 Dec 19
Event2019 JSAE/SAE Powertrains, Fuels and Lubricants International Meeting, JSAE 2019 - Kyoto, Japan
Duration: 2019 Aug 262019 Aug 29

ASJC Scopus subject areas

  • Automotive Engineering
  • Safety, Risk, Reliability and Quality
  • Pollution
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Influence of ethanol blending on knocking in a lean burn SI engine'. Together they form a unique fingerprint.

Cite this