Inhibition of IGF-1-Mediated cellular migration and invasion by migracin a in ovarian clear cell carcinoma cells

Tamami Ukaji, Yinzhi Lin, Kouji Banno, Shoshiro Okada, Kazuo Umezawa

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Previously we isolated migracin A from a Streptomyces culture filtrate as an inhibitor of cancer cell migration. In the present research, we found that migracin A inhibited migration and invasion of ovarian clear cell carcinoma ES-2 cells. In the course of our mechanistic study, migracin A was shown to enhance vasohibin-1 expression in an angiogenesis array. We also confirmed that it increased the mRNA expression of this protein. Moreover, overexpression of vasohibin-1 lowered the migration but not the invasion of ES-2 cells. Then, we looked for another target protein employing a motility array, and found that migracin A lowered the IGF-1 expression. Knockdown of IGF-1 by siRNA decreased the migration and invasion of ES-2 cells. Migracin A also decreased Akt phosphorylation involved in the downstream signaling. Crosstalk analysis indicated that overexpression of vasohibin-1 decreased the IGF-1 expression. On the other hand, it showed no direct anticancer activity in terms of the ES-2 growth in agar. Migracin A inhibited the migration and IGF-1 expression in not only ES-2 but also another ovarian clear cell carcinoma JHOC-5 cells. In addition, it also inhibited capillary tube formation of human umbilical vein endothelial cells. Since its cytotoxicity is very low, migracin A may be a candidate for an anti-metastasis agent not exhibiting prominent toxicity.

Original languageEnglish
Article numbere0137663
JournalPloS one
Volume10
Issue number9
DOIs
Publication statusPublished - 2015 Sept 11

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint

Dive into the research topics of 'Inhibition of IGF-1-Mediated cellular migration and invasion by migracin a in ovarian clear cell carcinoma cells'. Together they form a unique fingerprint.

Cite this