TY - JOUR
T1 - Interneuronal NMDA receptors regulate long-term depression and motor learning in the cerebellum
AU - Kono, Maya
AU - Kakegawa, Wataru
AU - Yoshida, Kazunari
AU - Yuzaki, Michisuke
N1 - Funding Information:
This work was supported by Grants-in Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (16H06461, 15H05772 to M.Y.; 18H04563, 17H05579, 17H04020 to W.K.), the Keio University Grant-in-Aid for Encouragement of Young Medical Scientists (M.K.), the AMED (16dm0107124h0001, W.K.), the CREST from the Japan Science Technology Agency (JPMJCR1854, M.Y.), and the Takeda Science Foundation (W.K.).
Publisher Copyright:
© 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society
PY - 2019/2/1
Y1 - 2019/2/1
N2 - Key points: NMDA receptors (NMDARs) are required for long-term depression (LTD) at parallel fibre–Purkinje cell synapses, but their cellular localization and physiological functions in vivo are unclear. NMDARs in molecular-layer interneurons (MLIs), but not granule cells or Purkinje cells, are required for LTD, but not long-term potentiation induced by low-frequency stimulation of parallel fibres. Nitric oxide produced by NMDAR activation in MLIs probably mediates LTD induction. NMDARs in granule cells or Purkinje cells are dispensable for motor learning during adaptation of horizontal optokinetic responses. Abstract: Long-term potentiation (LTP) and depression (LTD), which serve as cellular synaptic plasticity models for learning and memory, are crucially regulated by N-methyl-d-aspartate receptors (NMDARs) in various brain regions. In the cerebellum, LTP and LTD at parallel fibre (PF)–Purkinje cell (PC) synapses are thought to mediate certain forms of motor learning. However, while NMDARs are essential for LTD in vitro, their cellular localization remains controversial. In addition, whether and how NMDARs mediate motor learning in vivo remains unclear. Here, we examined the contribution of NMDARs expressed in granule cells (GCs), PCs and molecular-layer interneurons (MLIs) to LTD/LTP and motor learning by generating GC-, PC- and MLI/PC-specific knockouts of Grin1, a gene encoding an obligatory GluN1 subunit of NMDARs. While robust LTD and LTP were induced at PF–PC synapses in GC- and PC-specific Grin1 (GC-Grin1 and PC-Grin1, respectively) conditional knockout (cKO) mice, only LTD was impaired in MLI/PC-specific Grin1 (MLI/PC-Grin1) cKO mice. Application of diethylamine nitric oxide (NO) sodium, a potent NO donor, to the cerebellar slices restored LTD in MLI/PC-Grin1 cKO mice, suggesting that NO is probably downstream to NMDARs. Furthermore, the adaptation of horizontal optokinetic responses (hOKR), a cerebellar motor learning task, was normally observed in GC-Grin1 cKO and PC-Grin1 cKO mice, but not in MLI/PC-Grin1 cKO mice. These results indicate that it is the NMDARs expressed in MLIs, but not in PCs or GCs, that play important roles in LTD in vitro and motor learning in vivo.
AB - Key points: NMDA receptors (NMDARs) are required for long-term depression (LTD) at parallel fibre–Purkinje cell synapses, but their cellular localization and physiological functions in vivo are unclear. NMDARs in molecular-layer interneurons (MLIs), but not granule cells or Purkinje cells, are required for LTD, but not long-term potentiation induced by low-frequency stimulation of parallel fibres. Nitric oxide produced by NMDAR activation in MLIs probably mediates LTD induction. NMDARs in granule cells or Purkinje cells are dispensable for motor learning during adaptation of horizontal optokinetic responses. Abstract: Long-term potentiation (LTP) and depression (LTD), which serve as cellular synaptic plasticity models for learning and memory, are crucially regulated by N-methyl-d-aspartate receptors (NMDARs) in various brain regions. In the cerebellum, LTP and LTD at parallel fibre (PF)–Purkinje cell (PC) synapses are thought to mediate certain forms of motor learning. However, while NMDARs are essential for LTD in vitro, their cellular localization remains controversial. In addition, whether and how NMDARs mediate motor learning in vivo remains unclear. Here, we examined the contribution of NMDARs expressed in granule cells (GCs), PCs and molecular-layer interneurons (MLIs) to LTD/LTP and motor learning by generating GC-, PC- and MLI/PC-specific knockouts of Grin1, a gene encoding an obligatory GluN1 subunit of NMDARs. While robust LTD and LTP were induced at PF–PC synapses in GC- and PC-specific Grin1 (GC-Grin1 and PC-Grin1, respectively) conditional knockout (cKO) mice, only LTD was impaired in MLI/PC-specific Grin1 (MLI/PC-Grin1) cKO mice. Application of diethylamine nitric oxide (NO) sodium, a potent NO donor, to the cerebellar slices restored LTD in MLI/PC-Grin1 cKO mice, suggesting that NO is probably downstream to NMDARs. Furthermore, the adaptation of horizontal optokinetic responses (hOKR), a cerebellar motor learning task, was normally observed in GC-Grin1 cKO and PC-Grin1 cKO mice, but not in MLI/PC-Grin1 cKO mice. These results indicate that it is the NMDARs expressed in MLIs, but not in PCs or GCs, that play important roles in LTD in vitro and motor learning in vivo.
KW - LTD
KW - NMDA receptor
KW - interneuron
KW - motor learning
UR - http://www.scopus.com/inward/record.url?scp=85057037660&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85057037660&partnerID=8YFLogxK
U2 - 10.1113/JP276794
DO - 10.1113/JP276794
M3 - Article
C2 - 30382582
AN - SCOPUS:85057037660
SN - 0022-3751
VL - 597
SP - 903
EP - 920
JO - Journal of Physiology
JF - Journal of Physiology
IS - 3
ER -