Intracolonial genetic variation affects reproductive skew and colony productivity during colony foundation in a parthenogenetic termite

Satoshi Miyazaki, Miho Yoshimura, Ryota Saiki, Yoshinobu Hayashi, Osamu Kitade, Kazuki Tsuji, Kiyoto Maekawa

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)


Background: In insect societies, intracolonial genetic variation is predicted to affect both colony efficiency and reproductive skew. However, because the effects of genetic variation on these two colony characteristics have been tested independently, it remains unclear whether they are affected by genetic variation independently or in a related manner. Here we test the effect of genetic variation on colony efficiency and reproductive skew in a rhinotermitid termite, Reticulitermes speratus, a species in which female-female pairs can facultatively found colonies. We established colonies using two types of female-female pairs: colonies founded by sisters (i.e., sister-pair colonies) and those founded by females from different colonies (i.e., unrelated-pair colonies). Colony growth and reproductive skew were then compared between the two types of incipient colonies. Results: At 15 months after colony foundation, unrelated-pair colonies were larger than sister-pair colonies, although the caste ratio between workers and nymphs, which were alternatively differentiated from young larvae, did not differ significantly. Microsatellite DNA analyses of both founders and their parthenogenetically produced offspring indicated that, in both sister-pair and unrelated-pair colonies, there was no significant skew in the production of eggs, larvae, workers and soldiers. Nymph production, however, was significantly more skewed in the sister-pair colonies than in unrelated-pair colonies. Because nymphs can develop into winged adults (alates) or nymphoid reproductives, they have a higher chance of direct reproduction than workers in this species. Conclusions: Our results support the idea that higher genetic variation among colony members could provide an increase in colony productivity, as shown in hymenopteran social insects. Moreover, this study suggests that low genetic variation (high relatedness) between founding females increases reproductive skew via one female preferentially channeling her relatives along the reproductive track. This study thus demonstrated that, in social insects, intracolonial genetic variation can simultaneously affect both colony efficiency and reproductive skew.

Original languageEnglish
Article number177
JournalBMC Evolutionary Biology
Issue number1
Publication statusPublished - 2014
Externally publishedYes


  • Caste differentiation
  • Colony efficiency
  • Eusociality
  • Intracolonial genetic variation
  • Nymph
  • Parthenogenesis
  • Reproductive skew
  • Reticulitermes speratus

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics


Dive into the research topics of 'Intracolonial genetic variation affects reproductive skew and colony productivity during colony foundation in a parthenogenetic termite'. Together they form a unique fingerprint.

Cite this