TY - JOUR
T1 - Large magnetocapacitance beyond 420% in epitaxial magnetic tunnel junctions with an MgAl2O4 barrier
AU - Sato, Kenta
AU - Sukegawa, Hiroaki
AU - Ogata, Kentaro
AU - Xiao, Gang
AU - Kaiju, Hideo
N1 - Funding Information:
This research was supported by the Grant-in-Aid for Scientific Research (B) (under Grant No. 21H01397) and Challenging Exploratory Research Program (No. 19K22093) funded by the Japan Society for the Promotion of Science (JSPS), the Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials and the Cooperative Research Program of “Network Joint Research Center for Materials and Devices” funded by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Research Project funded by the Center for Spintronics Research Network (CSRN) at Keio and Tohoku University. The work at Brown was supported by the U.S. National Science Foundation (NSF) under Grant No. OMA-1936221.
Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Magnetocapacitance (MC) effect has been observed in systems where both symmetries of time-reversal and space-inversion are broken, for examples, in multiferroic materials and spintronic devices. The effect has received increasing attention due to its interesting physics and the prospect of applications. Recently, a large tunnel magnetocapacitance (TMC) of 332% at room temperature was reported using MgO-based (001)-textured magnetic tunnel junctions (MTJs). Here, we report further enhancement in TMC beyond 420% at room temperature using epitaxial MTJs with an MgAl2O4(001) barrier with a cation-disordered spinel structure. This large TMC is partially caused by the high effective tunneling spin polarization, resulted from the excellent lattice matching between the Fe electrodes and the MgAl2O4 barrier. The epitaxial nature of this MTJ system sports an enhanced spin-dependent coherent tunneling effect. Among other factors leading to the large TMC are the appearance of the spin capacitance, the large barrier height, and the suppression of spin flipping through the MgAl2O4 barrier. We explain the observed TMC by the Debye-Fröhlich modelled calculation incorporating Zhang-sigmoid formula, parabolic barrier approximation, and spin-dependent drift diffusion model. Furthermore, we predict a 1000% TMC in MTJs with a spin polarization of 0.8. These experimental and theoretical findings provide a deeper understanding on the intrinsic mechanism of the TMC effect. New applications based on large TMC may become possible in spintronics, such as multi-value memories, spin logic devices, magnetic sensors, and neuromorphic computing.
AB - Magnetocapacitance (MC) effect has been observed in systems where both symmetries of time-reversal and space-inversion are broken, for examples, in multiferroic materials and spintronic devices. The effect has received increasing attention due to its interesting physics and the prospect of applications. Recently, a large tunnel magnetocapacitance (TMC) of 332% at room temperature was reported using MgO-based (001)-textured magnetic tunnel junctions (MTJs). Here, we report further enhancement in TMC beyond 420% at room temperature using epitaxial MTJs with an MgAl2O4(001) barrier with a cation-disordered spinel structure. This large TMC is partially caused by the high effective tunneling spin polarization, resulted from the excellent lattice matching between the Fe electrodes and the MgAl2O4 barrier. The epitaxial nature of this MTJ system sports an enhanced spin-dependent coherent tunneling effect. Among other factors leading to the large TMC are the appearance of the spin capacitance, the large barrier height, and the suppression of spin flipping through the MgAl2O4 barrier. We explain the observed TMC by the Debye-Fröhlich modelled calculation incorporating Zhang-sigmoid formula, parabolic barrier approximation, and spin-dependent drift diffusion model. Furthermore, we predict a 1000% TMC in MTJs with a spin polarization of 0.8. These experimental and theoretical findings provide a deeper understanding on the intrinsic mechanism of the TMC effect. New applications based on large TMC may become possible in spintronics, such as multi-value memories, spin logic devices, magnetic sensors, and neuromorphic computing.
UR - http://www.scopus.com/inward/record.url?scp=85130046765&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85130046765&partnerID=8YFLogxK
U2 - 10.1038/s41598-022-11545-6
DO - 10.1038/s41598-022-11545-6
M3 - Article
C2 - 35577827
AN - SCOPUS:85130046765
SN - 2045-2322
VL - 12
JO - Scientific reports
JF - Scientific reports
IS - 1
M1 - 7190
ER -