TY - JOUR
T1 - LAT1-targeting thermoresponsive fluorescent polymer probes for cancer cell imaging
AU - Matsuura, Minami
AU - Ohshima, Mariko
AU - Hiruta, Yuki
AU - Nishimura, Tomohiro
AU - Nagase, Kenichi
AU - Kanazawa, Hideko
N1 - Funding Information:
The authors would like to thank H.Y. and A.M. for technical assistance with the experiments. This study was supported by the MEXT-Supported Program for the Strategic Research Foundation at Private Universities, S1411004 and the Adaptable and Seamless Technology Transfer Program through Target-driven R&D (Grant No. AS262Z02206P) to Y.H. from Japan Science and Technology (JST).
Funding Information:
Acknowledgments: The authors would like to thank H.Y. and A.M. for technical assistance with the experiments. This study was supported by the MEXT-Supported Program for the Strategic Research Foundation at Private Universities, S1411004 and the Adaptable and Seamless Technology Transfer Program through Target-driven R&D (Grant No. AS262Z02206P) to Y.H. from Japan Science and Technology (JST).
Publisher Copyright:
© 2018 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2018/6/1
Y1 - 2018/6/1
N2 - L-type amino acid transporter 1 (LAT1) is more highly expressed in cancer cells compared with normal cells. LAT1 targeting probes would therefore be a promising tool for cancer cell imaging. In this study, LAT1-targeting thermoresponsive fluorescent polymer probes based on poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) (P(NIPAAm-co-DMAAm)) were synthesized and their affinity for LAT1 was evaluated. The synthesized polymer probes interacted with LAT1 on HeLa cells, and inhibition of L-[3 H]-leucine, one of the substrates for LAT1 uptake, was investigated. L-Tyrosine-conjugated P(NIPAAm-co-DMAAm) inhibited the uptake of L-[3 H]-leucine, while P(NIPAAm-co-DMAAm) and L-phenylalanine-conjugated P(NIPAAm-co-DMAAm) did not. This result indicated that L-tyrosine-conjugated polymer has a high affinity for LAT1. The fluorescent polymer probes were prepared by modification of a terminal polymer group with fluorescein-5-maleimide (FL). Above the polymer transition temperature, cellular uptake of the polymer probes was observed because the polymers became hydrophobic, which enhanced the interaction with the cell membrane. Furthermore, quantitative analysis of the fluorescent probe using flow cytometry indicated that L-tyrosine-conjugated P(NIPAAm-co-DMAAm)-FL shows higher fluorescence intensity earlier than P(NIPAAm-co-DMAAm)-FL. The result suggested that cellular uptake was promoted by the LAT1 affinity site. The developed LAT1-targeting thermoresponsive fluorescent polymer probes are expected to be useful for cancer cell imaging.
AB - L-type amino acid transporter 1 (LAT1) is more highly expressed in cancer cells compared with normal cells. LAT1 targeting probes would therefore be a promising tool for cancer cell imaging. In this study, LAT1-targeting thermoresponsive fluorescent polymer probes based on poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) (P(NIPAAm-co-DMAAm)) were synthesized and their affinity for LAT1 was evaluated. The synthesized polymer probes interacted with LAT1 on HeLa cells, and inhibition of L-[3 H]-leucine, one of the substrates for LAT1 uptake, was investigated. L-Tyrosine-conjugated P(NIPAAm-co-DMAAm) inhibited the uptake of L-[3 H]-leucine, while P(NIPAAm-co-DMAAm) and L-phenylalanine-conjugated P(NIPAAm-co-DMAAm) did not. This result indicated that L-tyrosine-conjugated polymer has a high affinity for LAT1. The fluorescent polymer probes were prepared by modification of a terminal polymer group with fluorescein-5-maleimide (FL). Above the polymer transition temperature, cellular uptake of the polymer probes was observed because the polymers became hydrophobic, which enhanced the interaction with the cell membrane. Furthermore, quantitative analysis of the fluorescent probe using flow cytometry indicated that L-tyrosine-conjugated P(NIPAAm-co-DMAAm)-FL shows higher fluorescence intensity earlier than P(NIPAAm-co-DMAAm)-FL. The result suggested that cellular uptake was promoted by the LAT1 affinity site. The developed LAT1-targeting thermoresponsive fluorescent polymer probes are expected to be useful for cancer cell imaging.
KW - Fluorescent polymer probe
KW - L-type amino acid transporter 1 targeting
KW - Poly(N-isopropylacrylamide)
UR - http://www.scopus.com/inward/record.url?scp=85048037778&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85048037778&partnerID=8YFLogxK
U2 - 10.3390/ijms19061646
DO - 10.3390/ijms19061646
M3 - Article
C2 - 29865203
AN - SCOPUS:85048037778
SN - 1661-6596
VL - 19
JO - International journal of molecular sciences
JF - International journal of molecular sciences
IS - 6
M1 - 1646
ER -