Abstract
This paper addresses a learning problem for nonlinear dynamical systems with incorporating any specified dissipativity property. The nonlinear systems are described by the Koopman operator, which is a linear operator defined on the infinite-dimensional lifted state space. The problem of learning the Koopman operator under specified quadratic dissipativity constraints is formulated and addressed. The learning problem is in a class of the non-convex optimization problem due to nonlinear constraints and is numerically intractable. By applying the change of variable technique and the convex overbounding approximation, the problem is reduced to sequential convex optimization and is solved in a numerically efficient manner. Finally, a numerical simulation is given, where high modeling accuracy achieved by the proposed approach including the specified dissipativity is demonstrated.
Original language | English |
---|---|
Pages (from-to) | 1169-1174 |
Number of pages | 6 |
Journal | IFAC-PapersOnLine |
Volume | 53 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2020 |
Event | 21st IFAC World Congress 2020 - Berlin, Germany Duration: 2020 Jul 12 → 2020 Jul 17 |
Keywords
- Dissipativity
- Koopman operator
- Learning
- Linear matrix inequality
ASJC Scopus subject areas
- Control and Systems Engineering