Learning Sensor Interdependencies for IMU-to-Segment Assignment

Tomoya Kaichi, Tsubasa Maruyama, Mitsunori Tada, Hideo Saito

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


Due to the recent technological advances in inertial measurement units (IMUs), many applications for the measurement of human motion using multiple body-worn IMUs have been developed. In these applications, each IMU has to be attached to a predefined body segment. A technique to identify the body segment on which each IMU is mounted allows users to attach inertial sensors to arbitrary body segments, which avoids having to remeasure due to incorrect attachment of the sensors. We address this IMU-to-segment assignment problem and propose a novel end-to-end learning model that incorporates a global feature generation module and an attention-based mechanism. The former extracts the feature representing the motion of all attached IMUs, and the latter enables the model to learn the dependency relationships between the IMUs. The proposed model thus identifies the IMU placement based on the features from global motion and relevant IMUs. We quantitatively evaluated the proposed method using synthetic and real public datasets with three sensor configurations, including a full-body configuration mounting 15 sensors. The results demonstrated that our approach significantly outperformed the conventional and baseline methods for all datasets and sensor configurations.

Original languageEnglish
Pages (from-to)116440-116452
Number of pages13
JournalIEEE Access
Publication statusPublished - 2021


  • IMU-to-segment assignment
  • Inertial measurement units
  • attention mechanism
  • convolutional neural network
  • recurrent neural network

ASJC Scopus subject areas

  • General Engineering
  • General Materials Science
  • General Computer Science


Dive into the research topics of 'Learning Sensor Interdependencies for IMU-to-Segment Assignment'. Together they form a unique fingerprint.

Cite this