TY - JOUR
T1 - Lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 inhibit human neutrophil migration
T2 - Comparisons between synthetic 15 epimers in chemotaxis and transmigration with microvessel endothelial cells and epithelial cells
AU - Fierro, Iolanda M.
AU - Colgan, Sean P.
AU - Bernasconi, Giovanni
AU - Petasis, Nicos A.
AU - Clish, Clary B.
AU - Arita, Makoto
AU - Serhan, Charles N.
PY - 2003/3/1
Y1 - 2003/3/1
N2 - Lipoxins (LX) are bioactive eicosanoids that can be formed during cell to cell interactions in human tissues to self limit key responses in host defense and promote resolution. Aspirin treatment initiates biosynthesis of carbon 15 epimeric LXs, and both series of epimers (LX and aspirin-triggered 15-epi-LX) display counter-regulatory actions with neutrophils. In this study, we report that synthetic lipoxin A4 (LXA4) and 15-epi-LXA4 (i.e., 15(R)-LXA4 or aspirin triggered LXA4) are essentially equipotent in inhibiting human polymorphonuclear leukocytes (PMN) in vitro chemotaxis in response to leukotriene B4, with the maximum inhibition (∼50% reduction) obtained at 1 nM LXA4. At higher concentrations, 15-epi-LXA4 proved more potent than LXA4 as its corresponding carboxyl methyl ester. Also, exposure of PMN to LXA4 and 15-epi-LXA4 markedly decreased PMN transmigration across both human microvessel endothelial and epithelial cells, where 15-epi-LXA4 was more active than LXA4 at "stopping" migration across epithelial cells. Differences in potency existed between LXA4 and 15-epi-LXA4 as their carboxyl methyl esters appear to arise from cell type-specific conversion of their respective carboxyl methyl esters to their corresponding carboxylates as monitored by liquid chromatography tandem mass spectrometry. Both synthetic LXA4 and 15-epi-LXA4 as free acids activate recombinant human LXA4 receptor (ALXR) to regulate gene expression, whereas the corresponding methyl ester of LXA4 proved to be a partial ALXR antagonist and did not effectively regulate gene expression. These results demonstrate the potent stereospecific actions shared by LXA4 and 15-epi-LXA4 for activating human ALXR-regulated gene expression and their ability to inhibit human PMN migration during PMN vascular as well as mucosal cell to cell interactions.
AB - Lipoxins (LX) are bioactive eicosanoids that can be formed during cell to cell interactions in human tissues to self limit key responses in host defense and promote resolution. Aspirin treatment initiates biosynthesis of carbon 15 epimeric LXs, and both series of epimers (LX and aspirin-triggered 15-epi-LX) display counter-regulatory actions with neutrophils. In this study, we report that synthetic lipoxin A4 (LXA4) and 15-epi-LXA4 (i.e., 15(R)-LXA4 or aspirin triggered LXA4) are essentially equipotent in inhibiting human polymorphonuclear leukocytes (PMN) in vitro chemotaxis in response to leukotriene B4, with the maximum inhibition (∼50% reduction) obtained at 1 nM LXA4. At higher concentrations, 15-epi-LXA4 proved more potent than LXA4 as its corresponding carboxyl methyl ester. Also, exposure of PMN to LXA4 and 15-epi-LXA4 markedly decreased PMN transmigration across both human microvessel endothelial and epithelial cells, where 15-epi-LXA4 was more active than LXA4 at "stopping" migration across epithelial cells. Differences in potency existed between LXA4 and 15-epi-LXA4 as their carboxyl methyl esters appear to arise from cell type-specific conversion of their respective carboxyl methyl esters to their corresponding carboxylates as monitored by liquid chromatography tandem mass spectrometry. Both synthetic LXA4 and 15-epi-LXA4 as free acids activate recombinant human LXA4 receptor (ALXR) to regulate gene expression, whereas the corresponding methyl ester of LXA4 proved to be a partial ALXR antagonist and did not effectively regulate gene expression. These results demonstrate the potent stereospecific actions shared by LXA4 and 15-epi-LXA4 for activating human ALXR-regulated gene expression and their ability to inhibit human PMN migration during PMN vascular as well as mucosal cell to cell interactions.
UR - http://www.scopus.com/inward/record.url?scp=0037369653&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037369653&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.170.5.2688
DO - 10.4049/jimmunol.170.5.2688
M3 - Article
C2 - 12594298
AN - SCOPUS:0037369653
SN - 0022-1767
VL - 170
SP - 2688
EP - 2694
JO - Journal of Immunology
JF - Journal of Immunology
IS - 5
ER -