TY - JOUR
T1 - Long Cycles Passing Through a Specified Edge in a 3-Connected Graph
AU - Enomoto, Hikoe
AU - Hirohata, Kazuhide
AU - Ota, Katsuhiro
PY - 1997/3
Y1 - 1997/3
N2 - We prove the following theorem: For a connected noncomplete graph G, let τ(G): = min{dG(u) + dG(v)|dG(u, v) = 2}. Suppose G is a 3-connected noncomplete graph. Then through each edge of G there passes a cycle of length ≥ min{|V(G)|, τ(G) - 1}.
AB - We prove the following theorem: For a connected noncomplete graph G, let τ(G): = min{dG(u) + dG(v)|dG(u, v) = 2}. Suppose G is a 3-connected noncomplete graph. Then through each edge of G there passes a cycle of length ≥ min{|V(G)|, τ(G) - 1}.
UR - http://www.scopus.com/inward/record.url?scp=0347076283&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0347076283&partnerID=8YFLogxK
U2 - 10.1002/(SICI)1097-0118(199703)24:3<275::AID-JGT9>3.0.CO;2-M
DO - 10.1002/(SICI)1097-0118(199703)24:3<275::AID-JGT9>3.0.CO;2-M
M3 - Article
AN - SCOPUS:0347076283
SN - 0364-9024
VL - 24
SP - 275
EP - 279
JO - Journal of Graph Theory
JF - Journal of Graph Theory
IS - 3
ER -