TY - JOUR
T1 - L1Estimates for Maximal Functions and Riesz Transform on Real Rank 1 Semisimple Lie Groups
AU - Kawazoe, Takeshi
PY - 1998/8/20
Y1 - 1998/8/20
N2 - LetGbe a real rank one semisimple Lie group andKa maximal compact subgroup ofG. Radial maximal operators for suitable dilations, the heat and Poisson maximal operators, and the Riesz transform, which act onK-bi-invariant functions onG, satisfy theLp-norm inequalities forp 1 and a weak typeL1estimate. In this paper, through the Fourier theories onRandGwe shall duplicate the Hardy spaceH1(R) to a subspaceH1s(G) (s≥0) ofL1(G) and show that these operators are bounded fromH1s(G) toL1(G).
AB - LetGbe a real rank one semisimple Lie group andKa maximal compact subgroup ofG. Radial maximal operators for suitable dilations, the heat and Poisson maximal operators, and the Riesz transform, which act onK-bi-invariant functions onG, satisfy theLp-norm inequalities forp 1 and a weak typeL1estimate. In this paper, through the Fourier theories onRandGwe shall duplicate the Hardy spaceH1(R) to a subspaceH1s(G) (s≥0) ofL1(G) and show that these operators are bounded fromH1s(G) toL1(G).
UR - http://www.scopus.com/inward/record.url?scp=0002299895&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0002299895&partnerID=8YFLogxK
U2 - 10.1006/jfan.1998.3256
DO - 10.1006/jfan.1998.3256
M3 - Article
AN - SCOPUS:0002299895
SN - 0022-1236
VL - 157
SP - 327
EP - 357
JO - Journal of Functional Analysis
JF - Journal of Functional Analysis
IS - 2
ER -