TY - JOUR
T1 - Macrophage extracellular trap formation promoted by platelet activation is a key mediator of rhabdomyolysis-induced acute kidney injury
AU - Okubo, Koshu
AU - Kurosawa, Miho
AU - Kamiya, Mako
AU - Urano, Yasuteru
AU - Suzuki, Akari
AU - Yamamoto, Kazuhiko
AU - Hase, Koji
AU - Homma, Koichiro
AU - Sasaki, Junichi
AU - Miyauchi, Hiroaki
AU - Hoshino, Tatsuo
AU - Hayashi, Matsuhiko
AU - Mayadas, Tanya N.
AU - Hirahashi, Junichi
N1 - Funding Information:
We thank the Collaborative Research Resources, School of Medicine, Keio University for technical assistance. We gratefully thank T. Shimosawa (University of Tokyo) for animal care assistance. This work was supported in part by a grant-in-aid from Ministry of Education, Culture, Sports, Science and Technology of Japan (15K09459 (J.H.) and 16K19497 (K.O.)). T.N.M. was supported by National Heart, Lung and Blood Institute (NLHBI), National Institutes of Health (HL065095). J.H. was also supported by grants from Research on Rare and Intractable Diseases, Ministry of Health, Labour and Welfare, Japan (nannti-ippann-004) and the study group for strategic exploration of drug seeds for antineutrophil cytoplasmic autoantibodies (ANCA)-associated vasculitis and construction of clinical evidence from Japan Agency for Medical Research and development, AMED under grant number JP17ek0109104.
PY - 2018/2/1
Y1 - 2018/2/1
N2 - Rhabdomyolysis is a serious syndrome caused by skeletal muscle injury and the subsequent release of breakdown products from damaged muscle cells into systemic circulation. The muscle damage most often results from strenuous exercise, muscle hypoxia, medications, or drug abuse and can lead to life-threatening complications, such as acute kidney injury (AKI). Rhabdomyolysis and the AKI complication can also occur during crush syndrome, an emergency condition that commonly occurs in victims of natural disasters, such as earthquakes, and man-made disasters, such as wars and terrorism. Myoglobin released from damaged muscle is believed to trigger renal dysfunction in this form of AKI. Recently, macrophages were implicated in the disease pathogenesis of rhabdomyolysis-induced AKI, but the precise molecular mechanism remains unclear. In the present study, we show that macrophages released extracellular traps (ETs) comprising DNA fibers and granule proteins in a mouse model of rhabdomyolysis. Heme-activated platelets released from necrotic muscle cells during rhabdomyolysis enhanced the production of macrophage extracellular traps (METs) through increasing intracellular reactive oxygen species generation and histone citrullination. Here we report, for the first time to our knowledge, this unanticipated role for METs and platelets as a sensor of myoglobin-derived heme in rhabdomyolysis-induced AKI. This previously unknown mechanism might be targeted for treatment of the disease. Finally, we found a new therapeutic tool for prevention of AKI after rhabdomyolysis, which might rescue some sufferers of this pathology.
AB - Rhabdomyolysis is a serious syndrome caused by skeletal muscle injury and the subsequent release of breakdown products from damaged muscle cells into systemic circulation. The muscle damage most often results from strenuous exercise, muscle hypoxia, medications, or drug abuse and can lead to life-threatening complications, such as acute kidney injury (AKI). Rhabdomyolysis and the AKI complication can also occur during crush syndrome, an emergency condition that commonly occurs in victims of natural disasters, such as earthquakes, and man-made disasters, such as wars and terrorism. Myoglobin released from damaged muscle is believed to trigger renal dysfunction in this form of AKI. Recently, macrophages were implicated in the disease pathogenesis of rhabdomyolysis-induced AKI, but the precise molecular mechanism remains unclear. In the present study, we show that macrophages released extracellular traps (ETs) comprising DNA fibers and granule proteins in a mouse model of rhabdomyolysis. Heme-activated platelets released from necrotic muscle cells during rhabdomyolysis enhanced the production of macrophage extracellular traps (METs) through increasing intracellular reactive oxygen species generation and histone citrullination. Here we report, for the first time to our knowledge, this unanticipated role for METs and platelets as a sensor of myoglobin-derived heme in rhabdomyolysis-induced AKI. This previously unknown mechanism might be targeted for treatment of the disease. Finally, we found a new therapeutic tool for prevention of AKI after rhabdomyolysis, which might rescue some sufferers of this pathology.
UR - http://www.scopus.com/inward/record.url?scp=85041541866&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85041541866&partnerID=8YFLogxK
U2 - 10.1038/nm.4462
DO - 10.1038/nm.4462
M3 - Article
C2 - 29309057
AN - SCOPUS:85041541866
SN - 1078-8956
VL - 24
SP - 232
EP - 238
JO - Nature medicine
JF - Nature medicine
IS - 2
ER -