Mapping orbitofrontal-limbic maturation in non-human primates: A longitudinal magnetic resonance imaging study

Akiko Uematsu, Junichi Hata, Yuji Komaki, Fumiko Seki, Chihoko Yamada, Norio Okahara, Yoko Kurotaki, Erika Sasaki, Hideyuki Okano

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)


Brain development involves spatiotemporally complex microstructural changes. A number of neuropsychiatric disorders are linked to the neural processes of development and aging. Thus, it is important to understanding the typical developmental patterns of various brain structures, which will help to define critical periods of vulnerability for neural maturation, as well as anatomical mechanisms of brain structure-related neuropathology. In this study, we used magnetic resonance imaging to assess development of the orbitofrontal cortex, cingulate cortex, amygdala, and hippocampus in a non-human primate species, the common marmoset (Callithrix jacchus). We collected a total of 114 T2-weighted and 91 diffusion-weighted scans from 23 animals from infancy to early adulthood. Quantitative and qualitative evaluation of age-related brain growth patterns showed non-linear structural developmental changes in all measured brain regions, consistent with reported human data. Overall, robust volumetric growth was observed from 1 to 3 months of age (from infancy to the early juvenile period). This rapid brain growth was associated with the largest decrease in mean, axial, and radial diffusivities of diffusion tensor imaging in all brain regions, suggesting an increase in the number and size of cells, dendrites, and spines during this period. After this developmental period, the volume of various brain regions steadily increased until adolescence (7–13 months of age, depending on the region). Further, structural connectivity derived from tractography data in various brain regions continuously changed from infancy to adolescence, suggesting that the increase in brain volume was related to continued axonal myelination during adolescence. Thereafter, the volume of the cortical regions decreased considerably, while there was no change in subcortical regions. Familial factors, rather than sex, contributed the development of the front-limbic brain regions. Overall, this study provides further data on the factors and timing important for normal brain development, and suggest that the common marmoset is a useful animal model for human neural development.

Original languageEnglish
Pages (from-to)55-67
Number of pages13
Publication statusPublished - 2017 Dec


  • Brain development
  • Diffusion tensor imaging
  • Limbic
  • Marmosets
  • Structural magnetic resonance imaging

ASJC Scopus subject areas

  • Neurology
  • Cognitive Neuroscience


Dive into the research topics of 'Mapping orbitofrontal-limbic maturation in non-human primates: A longitudinal magnetic resonance imaging study'. Together they form a unique fingerprint.

Cite this