TY - GEN
T1 - Micro-rotation flow chamber rapidly forming collagen gel-mediated hetero-spheroids
AU - Ota, Hiroki
AU - Kodama, Taiga
AU - Yamato, Masayuki
AU - Okano, Teruo
AU - Miki, Norihisa
PY - 2011
Y1 - 2011
N2 - Spheroids that are formed from aggregated cells enhance biological function compared to monolayer culture. In particular, hetero-spheroids composed of different types of cells, such as hepatocytes and endothelial cells, express tissue specific functions at a high level, which is advantageous for more precise drug screening and biological research. In this study, we propose rapid formation of three-dimensional hetero-spheroids consisting of hepatocytes and endothelial cells using micro-rotation flow. The hepatocytes are coated with collagen gel layers less than 200 nm thick to increase adhesion strength between hepatocytes and endothelial cells. Gel-coated hepatocytes and endothelial cells are collected in an array by micro-rotational flow and collagen-gel coating, thereby forming hetero-spheroids within 2 min. This array allowed the size of the three-dimensional spheroids to be hydrodynamically controlled by varying the cell density of the medium without altering the device geometry with standard deviations of less than 19%. The proposed microfulidic device, with its capacity of rapidly forming size-controlled hetero-cell aggregates, will offer an efficient experimental platform for heterospheroid study that will contribute to drug screening and regenerative medicine.
AB - Spheroids that are formed from aggregated cells enhance biological function compared to monolayer culture. In particular, hetero-spheroids composed of different types of cells, such as hepatocytes and endothelial cells, express tissue specific functions at a high level, which is advantageous for more precise drug screening and biological research. In this study, we propose rapid formation of three-dimensional hetero-spheroids consisting of hepatocytes and endothelial cells using micro-rotation flow. The hepatocytes are coated with collagen gel layers less than 200 nm thick to increase adhesion strength between hepatocytes and endothelial cells. Gel-coated hepatocytes and endothelial cells are collected in an array by micro-rotational flow and collagen-gel coating, thereby forming hetero-spheroids within 2 min. This array allowed the size of the three-dimensional spheroids to be hydrodynamically controlled by varying the cell density of the medium without altering the device geometry with standard deviations of less than 19%. The proposed microfulidic device, with its capacity of rapidly forming size-controlled hetero-cell aggregates, will offer an efficient experimental platform for heterospheroid study that will contribute to drug screening and regenerative medicine.
UR - http://www.scopus.com/inward/record.url?scp=84863299806&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863299806&partnerID=8YFLogxK
U2 - 10.1109/MHS.2011.6102166
DO - 10.1109/MHS.2011.6102166
M3 - Conference contribution
AN - SCOPUS:84863299806
SN - 9781457713613
T3 - 2011 Int. Symp. on Micro-NanoMechatronics and Human Science, Symp. on "COE for Education and Research of Micro-Nano Mechatronics", Symposium on "Hyper Bio Assembler for 3D Cellular System Innovation"
SP - 94
EP - 98
BT - 2011 Int. Symp. on Micro-NanoMechatronics and Human Science, Symp. on "COE for Education and Research of Micro-Nano Mechatronics", Symposium on "Hyper Bio Assembler for 3D Cellular System Innovation"
PB - IEEE Computer Society
T2 - 22nd Annual Symp. on Micro-Nano Mechatronics and Human Science, MHS 2011, Held Jointly with the Symp. on COE for Education and Research of Micro-Nano Mechatronics, Micro-Nano GCOE 2011, Symp. on Hyper Bio Assembler for 3D Cellular System Innovation
Y2 - 6 November 2011 through 9 November 2011
ER -