Micro-tube mass production device for microbial culture

K. Fujimoto, M. Ogawa, K. Higashi, Norihisa Miki

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

This paper describes mass production system of micro-tubes for microbial culture in an open environment. Microbes are used in many fields, such as food, medicine, environmental and energy. We proposed a microbe culture system using hydrogel micro-tubes, which can protect the target microbes inside from competitive microbes outside of the tubes while allow oxygen and nutrition to diffuse through. The hydrogel micro-tubes can be produced by a microfluidic device, which can precisely control the flow and therefore, the tube geometry. For practical applications of the micro-tube-based microbial culture, one of the biggest challenges is the scale-up of the micro-tube-based culture system, or mass production of the tubes. We developed a fluidic system that can produce multiple micro-tubes in parallel. We characterized the mass-produced micro channels and verified the effectiveness of the system.

Original languageEnglish
Title of host publication2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages481-484
Number of pages4
Volume2016-October
ISBN (Electronic)9781457702204
DOIs
Publication statusPublished - 2016 Oct 13
Event38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 - Orlando, United States
Duration: 2016 Aug 162016 Aug 20

Other

Other38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
Country/TerritoryUnited States
CityOrlando
Period16/8/1616/8/20

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Micro-tube mass production device for microbial culture'. Together they form a unique fingerprint.

Cite this