Modal analysis of a motorcycle motion during braking for its stabilization control system design

Shintaroh Murakami, Hidekazu Nishimura

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, modal motion of a motorcycle during braking is analyzed to clarify influence of a stabilization control system designed to the modes. A thirteen degree-of-freedom nonlinear state-space model including rider's motion is linearized around an equilibrium point of quasi-steady state straight running with constant deceleration, and the modal analysis is carried out using the linearized state-space models. Conducting mode separation and performing simulations utilizing the linearized state-space models, the behavior of the modes including capsize, weave, and wobble modes are analyzed. The characteristic of each mode is clarified from relationships among the impulsive responses of simulations and the eigenvectors obtained from eigenanalysis. Furthermore, the influence of a motorcycle stabilization control system to each mode is analyzed from simulation results.

Original languageEnglish
Title of host publicationAerial Vehicles; Aerospace Control; Alternative Energy; Automotive Control Systems; Battery Systems; Beams and Flexible Structures; Biologically-Inspired Control and its Applications;
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)9780791856123
DOIs
Publication statusPublished - 2013 Jan 1
EventASME 2013 Dynamic Systems and Control Conference, DSCC 2013 - Palo Alto, CA, United States
Duration: 2013 Oct 212013 Oct 23

Publication series

NameASME 2013 Dynamic Systems and Control Conference, DSCC 2013
Volume1

Other

OtherASME 2013 Dynamic Systems and Control Conference, DSCC 2013
Country/TerritoryUnited States
CityPalo Alto, CA
Period13/10/2113/10/23

ASJC Scopus subject areas

  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Modal analysis of a motorcycle motion during braking for its stabilization control system design'. Together they form a unique fingerprint.

Cite this