TY - JOUR
T1 - Morphological differences in tardigrade spermatozoa induce variation in gamete motility
AU - Sugiura, Kenta
AU - Shiba, Kogiku
AU - Inaba, Kazuo
AU - Matsumoto, Midori
N1 - Funding Information:
We thank to Dr. Takekazu Kunieda (University of Tokyo), Dr. Kazuharu Arakawa (Keio University) and Naoko Ishii (Keio University) for providing us the tardigrades we used. We also thank to Dr. Atsushi C. Suzuki (Keio University) for supporting the SEM experiments. We would like to thank to Dr. Ryuji Yanase, Dr. Kei Jokura, Dr. Yu Sato, Dr. Misa Shibata, Dr. Nana Terauchi, Sayaka Yamaguchi (University of Tsukuba) and Osamu Horiguchi (Okinawa Institute of Science and Technology) for supporting our study.
Funding Information:
This study was supported in part by KAKENHI Grant-in-Aids from the Japan Society for the Promotion of Science (JSPS) and Grant-in-Aid for Scientific Research in Innovative Areas –Platforms for Advanced Technologies and Research Resource “Advanced Bioimaging Support” for JSPS Fellow PD (JP18J21345 and 20D-19C-010-L08 to KeS), and a grant for Research Project from Research and Education Center for Natural Science (Keio University) to MM and KeS.
Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Background: Fertilization is an event at the beginning of ontogeny. Successful fertilization depends on strategies for uniting female and male gametes that developed throughout evolutionary history. In some species of tardigrades, investigations of reproduction have revealed that released spermatozoa swim in the water to reach a female, after which the gametes are stored in her body. The morphology of the spermatozoa includes a coiled nucleus and a species-specific-length acrosome. Although the mating behaviour and morphology of tardigrades have been reported, the motility of male gametes remains unknown. Here, using a high-speed camera, we recorded the spermatozoon motilities of two tardigrades, Paramacrobiotus sp. and Macrobiotus shonaicus, which have longer and shorter spermatozoa, respectively. Results: The movement of spermatozoa was faster in Paramacrobiotus sp. than in M. shonaicus, but the beat frequencies of the tails were equal, suggesting that the long tail improved acceleration. In both species, the head part consisting of a coiled nucleus and an acrosome did not swing, in contrast to the tail. The head part of Paramacrobiotus sp. spermatozoa swung harder during turning; in contrast, the tail of M. shonaicus moved more widely than the head. Finally, after mating, the spermatozoa that reached the female aggregated around the cloaca while waiting to enter her body in both tested species. Conclusions: This study provides results for the first observations and analyses of individual spermatozoon motility in tardigrades. A comparison of the spermatozoon movements of the two tardigrades suggested that the motilities of the male gametes were affected by morphological differences, where the longer spermatozoa swam faster and the shorter ones showed more stable swimming. Swimming was mainly induced by tail movement, but the long head of Paramacrobiotus sp. spermatozoa might be especially important for turning. In addition, observations of mated female cloacae suggested that the head parts of the spermatozoa were required for aggregation around the cloaca of a mated female.
AB - Background: Fertilization is an event at the beginning of ontogeny. Successful fertilization depends on strategies for uniting female and male gametes that developed throughout evolutionary history. In some species of tardigrades, investigations of reproduction have revealed that released spermatozoa swim in the water to reach a female, after which the gametes are stored in her body. The morphology of the spermatozoa includes a coiled nucleus and a species-specific-length acrosome. Although the mating behaviour and morphology of tardigrades have been reported, the motility of male gametes remains unknown. Here, using a high-speed camera, we recorded the spermatozoon motilities of two tardigrades, Paramacrobiotus sp. and Macrobiotus shonaicus, which have longer and shorter spermatozoa, respectively. Results: The movement of spermatozoa was faster in Paramacrobiotus sp. than in M. shonaicus, but the beat frequencies of the tails were equal, suggesting that the long tail improved acceleration. In both species, the head part consisting of a coiled nucleus and an acrosome did not swing, in contrast to the tail. The head part of Paramacrobiotus sp. spermatozoa swung harder during turning; in contrast, the tail of M. shonaicus moved more widely than the head. Finally, after mating, the spermatozoa that reached the female aggregated around the cloaca while waiting to enter her body in both tested species. Conclusions: This study provides results for the first observations and analyses of individual spermatozoon motility in tardigrades. A comparison of the spermatozoon movements of the two tardigrades suggested that the motilities of the male gametes were affected by morphological differences, where the longer spermatozoa swam faster and the shorter ones showed more stable swimming. Swimming was mainly induced by tail movement, but the long head of Paramacrobiotus sp. spermatozoa might be especially important for turning. In addition, observations of mated female cloacae suggested that the head parts of the spermatozoa were required for aggregation around the cloaca of a mated female.
KW - Fertilization
KW - Imaging
KW - Macrobiotus shonaicus
KW - Mating
KW - Morphology
KW - Motility
KW - Paramacrobiotus sp
KW - Reproduction
KW - Spermatozoa
KW - Tardigrade
UR - http://www.scopus.com/inward/record.url?scp=85123985407&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85123985407&partnerID=8YFLogxK
U2 - 10.1186/s40850-022-00109-w
DO - 10.1186/s40850-022-00109-w
M3 - Article
AN - SCOPUS:85123985407
SN - 2056-3132
VL - 7
JO - BMC Zoology
JF - BMC Zoology
IS - 1
M1 - 8
ER -