TY - JOUR
T1 - Musashi1 modulates mammary progenitor cell expansion through proliferin-mediated activation of the wnt and notch pathways
AU - Wang, Xiao Yang
AU - Yin, Yuzhi
AU - Yuan, Hongyan
AU - Sakamaki, Toshiyuki
AU - Okano, Hideyuki
AU - Glazer, Robert I.
PY - 2008/6
Y1 - 2008/6
N2 - The RNA-binding protein Musashi1 (Msi1) is a positive regulator of Notch-mediated transcription in Drosophila melanogaster and neural progenitor cells and has been identified as a putative human breast stem cell marker. Here we describe a novel functional role for Msi1: its ability to drive progenitor cell expansion along the luminal and myoepithelial lineages. Expression of Msi1 in mammary epithelial cells increases the abundance of CD24hi Sca-1+, CD24hi CD29+, CK19, CK6, and double-positive CK14/CK18 progenitor cells. Proliferation is associated with increased proliferin-1 (PLF1) and reduced Dickkopf-3 (DKK3) secretion into the conditioned medium from Msi-expressing cells, which is associated with increased colony formation and extracellular signal-regulated kinase (ERK) phosphorylation. Treatment with the MEK inhibitor U0126 inhibits ERK activation and decreases Notch and β-catenin/T-cell factor (TCF) reporter activity resulting from Msi1 expression. Reduction of DKK3 in control cells with a short hairpin RNA (shRNA) increases Notch and β-catenin/TCF activation, whereas reduction of PLF1 with a shRNA in Msi1-expressing cells inhibits these pathways. These results identify Msi1 as a key determinant of the mammary lineage through its ability to coordinate cell cycle entry and activate the Notch and Wnt pathways by a novel autocrine process involving PLF1 and DKK3.
AB - The RNA-binding protein Musashi1 (Msi1) is a positive regulator of Notch-mediated transcription in Drosophila melanogaster and neural progenitor cells and has been identified as a putative human breast stem cell marker. Here we describe a novel functional role for Msi1: its ability to drive progenitor cell expansion along the luminal and myoepithelial lineages. Expression of Msi1 in mammary epithelial cells increases the abundance of CD24hi Sca-1+, CD24hi CD29+, CK19, CK6, and double-positive CK14/CK18 progenitor cells. Proliferation is associated with increased proliferin-1 (PLF1) and reduced Dickkopf-3 (DKK3) secretion into the conditioned medium from Msi-expressing cells, which is associated with increased colony formation and extracellular signal-regulated kinase (ERK) phosphorylation. Treatment with the MEK inhibitor U0126 inhibits ERK activation and decreases Notch and β-catenin/T-cell factor (TCF) reporter activity resulting from Msi1 expression. Reduction of DKK3 in control cells with a short hairpin RNA (shRNA) increases Notch and β-catenin/TCF activation, whereas reduction of PLF1 with a shRNA in Msi1-expressing cells inhibits these pathways. These results identify Msi1 as a key determinant of the mammary lineage through its ability to coordinate cell cycle entry and activate the Notch and Wnt pathways by a novel autocrine process involving PLF1 and DKK3.
UR - http://www.scopus.com/inward/record.url?scp=44349125782&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=44349125782&partnerID=8YFLogxK
U2 - 10.1128/MCB.00040-08
DO - 10.1128/MCB.00040-08
M3 - Article
C2 - 18362162
AN - SCOPUS:44349125782
SN - 0270-7306
VL - 28
SP - 3589
EP - 3599
JO - Molecular and cellular biology
JF - Molecular and cellular biology
IS - 11
ER -