New Classes of the Greedy-Applicable Arm Feature Distributions in the Sparse Linear Bandit Problem

Koji Ichikawa, Shinji Ito, Daisuke Hatano, Hanna Sumita, Takuro Fukunaga, Naonori Kakimura, Ken Ichi Kawarabayashi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We consider the sparse contextual bandit problem where arm feature affects reward through the inner product of sparse parameters. Recent studies have developed sparsity-agnostic algorithms based on the greedy arm selection policy. However, the analysis of these algorithms requires strong assumptions on the arm feature distribution to ensure that the greedily selected samples are sufficiently diverse; One of the most common assumptions, relaxed symmetry, imposes approximate origin-symmetry on the distribution, which cannot allow distributions that has origin-asymmetric support. In this paper, we show that the greedy algorithm is applicable to a wider range of the arm feature distributions from two aspects. Firstly, we show that a mixture distribution that has a greedy-applicable component is also greedy-applicable. Second, we propose new distribution classes, related to Gaussian mixture, discrete, and radial distribution, for which the sample diversity is guaranteed. The proposed classes can describe distributions with origin-asymmetric support and, in conjunction with the first claim, provide theoretical guarantees of the greedy policy for a very wide range of the arm feature distributions.

Original languageEnglish
Title of host publicationTechnical Tracks 14
EditorsMichael Wooldridge, Jennifer Dy, Sriraam Natarajan
PublisherAssociation for the Advancement of Artificial Intelligence
Pages12708-12716
Number of pages9
Edition11
ISBN (Electronic)1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879
DOIs
Publication statusPublished - 2024 Mar 25
Event38th AAAI Conference on Artificial Intelligence, AAAI 2024 - Vancouver, Canada
Duration: 2024 Feb 202024 Feb 27

Publication series

NameProceedings of the AAAI Conference on Artificial Intelligence
Number11
Volume38
ISSN (Print)2159-5399
ISSN (Electronic)2374-3468

Conference

Conference38th AAAI Conference on Artificial Intelligence, AAAI 2024
Country/TerritoryCanada
CityVancouver
Period24/2/2024/2/27

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'New Classes of the Greedy-Applicable Arm Feature Distributions in the Sparse Linear Bandit Problem'. Together they form a unique fingerprint.

Cite this