TY - JOUR
T1 - Nitric oxide-mediated modulation of interleukin-8 production by a human glioblastoma cell line, T98G, cocultured with myeloid and monocytic cell lines
AU - Oda, Taiko
AU - Kasahara, Tadashi
AU - Matsuura, Motohiro
AU - Mukaida, Naofumi
PY - 1998/10
Y1 - 1998/10
N2 - Coculture of T98G glioblastoma cells with the myeloid and monocytic cell lines, HL-60, and THP-1 produced minimal amounts of interleukin-8 (IL-8). Pretreatment of HL-60 or THP-1 cells with phorbol myristate acetate (PMA) enhanced their capacity to induce IL-8 production by T98G cells. In contrast, the murine macrophage cell lines J774 A.1 and RAW 264.7 induced high levels of IL-8 production by T98G cells without PMA activation. To determine the molecules responsible for the induction of IL-8 by T98G cells, we carried out coculture experiments with a membrane fraction prepared from RAW cells and indicated that membrane-associated and free forms of murine IL-1α acted on human T98G cells to produce IL-8. RAW cells were unique in that increasing the number of RAW cells relative to the number of T98G cells (RAW/T98G ratio > 4:1) significantly suppressed IL-8 production by T98G cells. Because RAW cells produce large amounts of nitric oxide (NO), we assumed that the suppression of IL-8 production was ascribable to the NO produced by the RAW cells. This was supported by the inverse relationship between increasing concentrations of NO and IL-8 production seen in this coculture system. The involvement of NO in the suppression of IL-8 production was confirmed by the finding that N-monomethyl-L-arginine (NMMA), which inhibits NO production, reversed this suppression, whereas S-nitroso-N-acetyl-D,L-penicillamine (SNAP), a strong NO generator, suppressed IL-8 production. Our results indicate that high levels of NO suppress IL-8 production by T98G cells, and murine IL-1α plays a major role in the induction of IL-8 production by T98G cells. It is, therefore, possible that excessive production of NO during the interaction of glioma cells with macrophages may play a regulatory role in chemokine production, thus mitigating inflammatory responses.
AB - Coculture of T98G glioblastoma cells with the myeloid and monocytic cell lines, HL-60, and THP-1 produced minimal amounts of interleukin-8 (IL-8). Pretreatment of HL-60 or THP-1 cells with phorbol myristate acetate (PMA) enhanced their capacity to induce IL-8 production by T98G cells. In contrast, the murine macrophage cell lines J774 A.1 and RAW 264.7 induced high levels of IL-8 production by T98G cells without PMA activation. To determine the molecules responsible for the induction of IL-8 by T98G cells, we carried out coculture experiments with a membrane fraction prepared from RAW cells and indicated that membrane-associated and free forms of murine IL-1α acted on human T98G cells to produce IL-8. RAW cells were unique in that increasing the number of RAW cells relative to the number of T98G cells (RAW/T98G ratio > 4:1) significantly suppressed IL-8 production by T98G cells. Because RAW cells produce large amounts of nitric oxide (NO), we assumed that the suppression of IL-8 production was ascribable to the NO produced by the RAW cells. This was supported by the inverse relationship between increasing concentrations of NO and IL-8 production seen in this coculture system. The involvement of NO in the suppression of IL-8 production was confirmed by the finding that N-monomethyl-L-arginine (NMMA), which inhibits NO production, reversed this suppression, whereas S-nitroso-N-acetyl-D,L-penicillamine (SNAP), a strong NO generator, suppressed IL-8 production. Our results indicate that high levels of NO suppress IL-8 production by T98G cells, and murine IL-1α plays a major role in the induction of IL-8 production by T98G cells. It is, therefore, possible that excessive production of NO during the interaction of glioma cells with macrophages may play a regulatory role in chemokine production, thus mitigating inflammatory responses.
UR - http://www.scopus.com/inward/record.url?scp=0031772683&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031772683&partnerID=8YFLogxK
U2 - 10.1089/jir.1998.18.905
DO - 10.1089/jir.1998.18.905
M3 - Article
C2 - 9809627
AN - SCOPUS:0031772683
SN - 1079-9907
VL - 18
SP - 905
EP - 912
JO - Journal of Interferon and Cytokine Research
JF - Journal of Interferon and Cytokine Research
IS - 10
ER -