Non-zero-sum microbiome immune system interactions

Timur Tuganbaev, Kenya Honda

Research output: Contribution to journalReview articlepeer-review

3 Citations (Scopus)

Abstract

Fundamental asymmetries between the host and its microbiome in enzymatic activities and nutrient storage capabilities have promoted mutualistic adaptations on both sides. As a result, the enteric immune system has evolved so as not to cause a zero-sum sterilization of non-self, but rather achieve a non-zero-sum self-reinforcing cooperation with its evolutionary partner the microbiome. In this review, we attempt to integrate the accumulated knowledge of immune—microbiome interactions into an evolutionary framework and trace the pattern of positive immune—microbiome feedback loops across epithelial, enteric nervous system, innate, and adaptive immune circuits. Indeed, the immune system requires commensal signals for its development and function, and reciprocally protects the microbiome from nutrient shortage and pathogen outgrowth. In turn, a healthy microbiome is the result of immune system curatorship as well as microbial ecology. The paradigms of host–microbiome asymmetry and the cooperative nature of their interactions identified in the gut are applicable across all tissues influenced by microbial activities. Incorporation of immune system influences into models of microbiome ecology will be a step forward toward defining what constitutes a healthy human microbiome and guide discoveries of novel host–microbiome mutualistic adaptations that may be harnessed for the promotion of human health.

Original languageEnglish
Pages (from-to)2120-2136
Number of pages17
JournalEuropean Journal of Immunology
Volume51
Issue number9
DOIs
Publication statusPublished - 2021 Sept

Keywords

  • enteric nervous system
  • gut-brain axis
  • immune system
  • microbiome
  • mutualism

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology

Fingerprint

Dive into the research topics of 'Non-zero-sum microbiome immune system interactions'. Together they form a unique fingerprint.

Cite this