TY - GEN
T1 - OmimamoriNet
T2 - 11th International Conference on Mobile Computing and Ubiquitous Network, ICMU 2018
AU - Chen, Yin
AU - Sakamura, Mina
AU - Nakazawa, Jin
AU - Yonezawa, Takuro
AU - Tsuge, Akira
AU - Hamada, Yuichi
N1 - Funding Information:
This research and development work was partly supported by the MIC/SCOPE #171503013 and JSPS Grant-in-Aid for Young Scientists (B) Grant Number 17K12677. The help from Takamasa Ikeda, Wataru Sasaki, Koji Oto, Kazuki Egashira and Naohiro Isokawa in Nakazawa Lab. are appreciated.
Publisher Copyright:
© 2018 IPSJ.
PY - 2018/7/2
Y1 - 2018/7/2
N2 - We propose in this paper an outdoor positioning system based on Wi-SUN FAN network, the goal of which is to protect the elderly, young children and even pets via estimating their locations in a city. In order to achieve long-term portability and network-side positioning, the system does not directly rely on GPS receiver mounted on terminals but use machine learning for location estimation via the received signal strength indication (RSSI) measurements. In particular, the system consists of Wi-SUN beacons, Wi-SUN base-stations and vehicular devices. A beacon, attached to the one to be positioned, broadcasts wireless signal periodically so that its location can be estimated using machine learning algorithms from the RSSIs measured at multiple base-stations that are densely deployed over a city to construct an ad hoc network. Using the mobility of vehicles that roam over a city routinely, such like garbage collection trucks, buses and taxies. Vehicular devices containing both a Wi-SUN beacon and a GPS are used to collect RSSIs and the corresponding GPS coordinates to train the estimation models. We develop a prototype system consisting of 9 base-stations and deploy it to our university campus to conduct a field experiment to validate the proposed approach. Offline analysis on the data collected from the experiment showed that a RandomForest learner performs best among four selected learning algorithms using the default parameters of Weka 3.8, which achieves a mean absolute error of 35.43m and a root mean squared error of 44.21m, respectively. Evaluation on network performance is also conducted.
AB - We propose in this paper an outdoor positioning system based on Wi-SUN FAN network, the goal of which is to protect the elderly, young children and even pets via estimating their locations in a city. In order to achieve long-term portability and network-side positioning, the system does not directly rely on GPS receiver mounted on terminals but use machine learning for location estimation via the received signal strength indication (RSSI) measurements. In particular, the system consists of Wi-SUN beacons, Wi-SUN base-stations and vehicular devices. A beacon, attached to the one to be positioned, broadcasts wireless signal periodically so that its location can be estimated using machine learning algorithms from the RSSIs measured at multiple base-stations that are densely deployed over a city to construct an ad hoc network. Using the mobility of vehicles that roam over a city routinely, such like garbage collection trucks, buses and taxies. Vehicular devices containing both a Wi-SUN beacon and a GPS are used to collect RSSIs and the corresponding GPS coordinates to train the estimation models. We develop a prototype system consisting of 9 base-stations and deploy it to our university campus to conduct a field experiment to validate the proposed approach. Offline analysis on the data collected from the experiment showed that a RandomForest learner performs best among four selected learning algorithms using the default parameters of Weka 3.8, which achieves a mean absolute error of 35.43m and a root mean squared error of 44.21m, respectively. Evaluation on network performance is also conducted.
KW - Automotive sensing
KW - Machine learning
KW - Positioning
KW - Smart cities
KW - Wi-SUN
UR - http://www.scopus.com/inward/record.url?scp=85055574017&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85055574017&partnerID=8YFLogxK
U2 - 10.23919/ICMU.2018.8653618
DO - 10.23919/ICMU.2018.8653618
M3 - Conference contribution
AN - SCOPUS:85055574017
T3 - 2018 11th International Conference on Mobile Computing and Ubiquitous Network, ICMU 2018
BT - 2018 11th International Conference on Mobile Computing and Ubiquitous Network, ICMU 2018
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 5 October 2018 through 8 October 2018
ER -