Optically thick winds from degenerate dwarfs. I. Classical novae of populations I and II

Mariko Kato

Research output: Contribution to journalArticlepeer-review

31 Citations (Scopus)


Twenty-six sequences of optically thick wind solutions have been calculated that mimic time-dependent evolution of classical novae of Populations I and II. The peak of the new opacity around log T = 5.2 due to iron lines is found to be strong enough to accelerate the winds even when the iron abundance is very low such as Z = 0.001 for massive white dwarfs (≥0.8 M). The old population novae show a slow light curve, a long X-ray turnoff time, a small expansion velocity, and a small wind mass-loss rate. The X-ray turnoff time is a good indicator of the white dwarf mass because of its strong dependence on the white dwarf mass and weak dependence on the populations. The white dwarf mass is estimated to be ∼0.6 M for GQ Mus and ∼1.0 M for V1974 Cyg. A systematic difference of the wind velocity is predicted between novae in globular clusters and in the galactic disk. Twenty-six tables are presented in computer-readable form on CD-ROM that consist of the optically thick wind solutions and the static solutions for the decay phase of classical novae with composition of X = 0.35, C = 0.1, and O = 0.2 and heavy element content Z = 0.001, 0.004, 0.02, 0.05, and 0.1 for white dwarf masses of 0.4, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, and 1.35 M. These tables list characteristic values of the envelope such as the photospheric temperature, the velocity, the wind mass-loss rate, and fluxes of four wavelength bands. The updated OPAL opacity is used.

Original languageEnglish
Pages (from-to)121-129
Number of pages9
JournalAstrophysical Journal, Supplement Series
Issue number1
Publication statusPublished - 1997 Nov
Externally publishedYes


  • Novae, cataclysmic variables
  • Stars: Evolution
  • Stars: Interiors
  • Stars: Mass loss
  • Stars: Population II
  • White dwarfs
  • X-rays: Stars

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'Optically thick winds from degenerate dwarfs. I. Classical novae of populations I and II'. Together they form a unique fingerprint.

Cite this