Oxidative Stress Induced Inflammation Initiates Functional Decline of Tear Production

Yuichi Uchino, Tetsuya Kawakita, Masaki Miyazawa, Takamasa Ishii, Hiromi Onouchi, Kayo Yasuda, Yoko Ogawa, Shigeto Shimmura, Naoaki Ishii, Kazuo Tsubota

Research output: Contribution to journalArticlepeer-review

106 Citations (Scopus)


Oxidative damage and inflammation are proposed to be involved in an age-related functional decline of exocrine glands. However, the molecular mechanism of how oxidative stress affects the secretory function of exocrine glands is unclear. We developed a novel mev-1 conditional transgenic mouse model (Tet-mev-1) using a modified tetracycline system (Tet-On/Off system). This mouse model demonstrated decreased tear production with morphological changes including leukocytic infiltration and fibrosis. We found that the mev-1 gene encodes Cyt-1, which is the cytochrome b560 large subunit of succinate-ubiquinone oxidoreductase in complex II of mitochondria (homologous to succinate dehydrogenase C subunit (SDHC) in humans). The mev-1 gene induced excessive oxidative stress associated with ocular surface epithelial damage and a decrease in protein and aqueous secretory function. This new model provides evidence that mitochondrial oxidative damage in the lacrimal gland induces lacrimal dysfunction resulting in dry eye disease. Tear volume in Tet-mev-1 mice was lower than in wild type mice and histopathological analyses showed the hallmarks of lacrimal gland inflammation by intense mononuclear leukocytic infiltration and fibrosis in the lacrimal gland of Tet-mev-1 mice. These findings strongly suggest that oxidative stress can be a causative factor for the development of dry eye disease.

Original languageEnglish
Article numbere45805
JournalPloS one
Issue number10
Publication statusPublished - 2012 Oct 5
Externally publishedYes

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Oxidative Stress Induced Inflammation Initiates Functional Decline of Tear Production'. Together they form a unique fingerprint.

Cite this