Poly (N-isopropylacrylamide)-PLA and PLA blend nanoparticles for temperature-controllable drug release and intracellular uptake

Eri Ayano, Miyuki Karaki, Tsutomu Ishihara, Hideko Kanazawa, Teruo Okano

Research output: Contribution to journalArticlepeer-review

74 Citations (Scopus)


We designed a temperature-responsive and biodegradable novel drug-delivery carrier. A block copolymer, poly (N-isopropylacrylamide-dl-lactide) (PNIPAAm-PLA), was synthesized by the ring-opening polymerization of dl-lactide, and used as a carrier for a drug-delivery system. In this study, temperature-responsive nanoparticles (NPs) encapsulating betamethasone disodium 21-phosphate (BP) were prepared from a blend of PLA homopolymer and block copolymers by an oil-in-water solvent-diffusion method in the presence of zinc ion (PLA/PNIPAAm-PLA (NPs)). The resulting NP size was around 140. nm. The drug release from temperature-responsive NP could be controllable by changing the temperature. Moreover, a murine macrophage-like cell line, RAW 264.7 cells, was used to measure and image the cell uptake of fluorescent PLA/PNIPAAm-PLA NPs at 30 °C and 37 °C on the boundary of LCST (34 °C). Below the LCST, cellular uptake was not observed, but contrary to cellular uptake it was clearly observed above the LCST. Moreover, we found this effect to be useful for controlling the stealthiness by changing the temperature. Present temperature-responsive NPs have successfully exhibited thermo-responsive drug release and intracellular uptake while possessing a biodegradable character.

Original languageEnglish
Pages (from-to)67-73
Number of pages7
JournalColloids and Surfaces B: Biointerfaces
Publication statusPublished - 2012 Nov 1


  • Cellular uptake
  • Nanoparticle
  • Poly (N-isopropylacrylamide)
  • Poly (lactic acid)
  • Temperature-responsive polymer

ASJC Scopus subject areas

  • Biotechnology
  • Surfaces and Interfaces
  • Physical and Theoretical Chemistry
  • Colloid and Surface Chemistry


Dive into the research topics of 'Poly (N-isopropylacrylamide)-PLA and PLA blend nanoparticles for temperature-controllable drug release and intracellular uptake'. Together they form a unique fingerprint.

Cite this