Powerful and controllable angiogenesis by using gene-modified cells expressing human hepatocyte growth factor and thymidine kinase

Yasuyo Hisaka, Masaki Ieda, Toshikazu Nakamura, Ken Ichiro Kosai, Satoshi Ogawa, Keiichi Fukuda

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)


Objectives This study investigated the possibility of achieving angiogenesis by using gene-modified cells as a vector. Background Although gene therapy for peripheral circulation disorders has been studied intensively, the plasmid or viral vectors have been associated with several disadvantages, including unreliable transfection and uncontrollable gene expression. Methods Human hepatocyte growth factor (hHGF) and thymidine kinase (TK) expression plasmids were serially transfected into NIH3T3 cells, and permanent transfectants were selected (NIH3T3 + hHGF + TK). Unilateral hindlimb ischemia was surgically induced in BALB/c nude mice, and cells were transplanted into the thigh muscles. All effects were assessed at four weeks. Results The messenger ribonucleic acid expression and protein production of hHGF were confirmed. Assay of growth inhibition by ganciclovir revealed that the 50% (median) inhibitory concentration of50 at first mention (50% "I?" concentration)> NIH3T3 + hHGF + TK was 1,000 times lower than that of NIH3T3 + hHGF. The NIH3T3 + hHGF + TK group had a higher laser Doppler blood perfusion index, higher microvessel density, wider microvessel diameter, and lower rate of hindlimb necrosis, as compared with the plasmid- and adenovirus-mediated hHGF transfection groups or the NIH3T3 group. The newly developed microvessels were accompanied by smooth muscle cells, as well as endothelial cells, indicating that they were on the arteriolar or venular level. Laser Doppler monitoring showed that the rate of blood perfusion could be controlled by oral administration of ganciclovir. The transplanted cells completely disappeared in response to ganciclovir administration for four weeks. Conclusions Gene-modified cell transplantation therapy induced strong angiogenesis and collateral vessel formation that could be controlled externally with ganciclovir.

Original languageEnglish
Pages (from-to)1915-1922
Number of pages8
JournalJournal of the American College of Cardiology
Issue number10
Publication statusPublished - 2004 May 19


  • 50% (median) inhibitory concentration50.>
  • DMEM
  • Dulbecco's modified Eagle's medium
  • EGFP
  • IC
  • LDPI
  • enhanced green fluorescent protein
  • enzyme-linked immunosorbent assay
  • hHGF
  • human hepatocyte growth factor

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine


Dive into the research topics of 'Powerful and controllable angiogenesis by using gene-modified cells expressing human hepatocyte growth factor and thymidine kinase'. Together they form a unique fingerprint.

Cite this