TY - JOUR
T1 - Prediction of Causative Genes in Inherited Retinal Disorders from Spectral-Domain Optical Coherence Tomography Utilizing Deep Learning Techniques
AU - Japan Eye Genetics Consortium
AU - Fujinami-Yokokawa, Yu
AU - Pontikos, Nikolas
AU - Yang, Lizhu
AU - Tsunoda, Kazushige
AU - Yoshitake, Kazutoshi
AU - Iwata, Takeshi
AU - Miyata, Hiroaki
AU - Fujinami, Kaoru
N1 - Funding Information:
Yu Fujinami-Yokokawa was supported by grants from Grant-in-Aid for Young Scientists of the Ministry of Education, Culture, Sports, Science and Technology, Japan (18K16943). Nikolas Pontikos was funded by the NIHR Moorfields Biomedical Research Center. Kaoru Fujinami was supported by grants from Grant-in-Aid for Young Scientists (A) of the Ministry of Education, Culture, Sports, Science and Technology, Japan (16H06269), Grant-in-Aid for Scientists to support international collaborative studies of the Ministry of Education, Culture, Sports, Science and Technology, Japan (16KK01930002), National Hospital Organization Network Research Fund (H30-NHO-2-12), Foundation Fighting Blindness ALAN LATIES CAREER DEVELOPMENT PROGRAM (CF-CL-0416-0696-UCL), Health Labour Sciences Research Grant, the Ministry of Health Labour and Welfare. (201711107A), and Great Britain Sasakawa Foundation Butterfield Awards. We are grateful to Dr. Xiao Liu and Dr. Gavin Arno, National Institute of Sensory Organs, National Tokyo Medical Center, Japan, for their help in clinical and genetic data analysis. We thank Professor Andrew Webster and Professor Michel Michaelides, UCL Institute of Ophthalmology associated with Moorfields Eye Hospital, UK, and Professor Yozo Miyake, Aichi Medical University, Japan, for insightful comments. We also thank all the collaborators of the Japan Eye Genetics Consortium (http://www.jegc.org/) and the East Asia Inherited Retinal Disease Society (https://www. fujinamik.com/east-asia-inherited-retinal-disease) for data collection. We thank Medic Mind for supporting the analytic process of this study.
Funding Information:
All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Individual investigators who participated in the sponsored project(s) are not directly compensated by the sponsor but may receive salary or other support from the institution to support their effort on the project(s). Kaoru Fujinami is a paid consultant of Astellas Pharma Inc, Kubota Pharmaceutical Holdings Co., Ltd, Acucela Inc., and Novartis AG. Kaoru Fujinami reports personal fees from Astellas Pharma Inc, Kubota Pharmaceutical Holdings Co., Ltd., Acucela Inc., SANTEN Company Limited, Foundation Fighting Blindness, Foundation Fighting Blindness Clinical Research Institute, Japanese Ophthalmology Society, and Japan Retinitis Pigmentosa Society. Laboratory of Visual Physiology, Division for Vision Research, National Institute of Sensory Organs, National Hospital Organization, Tokyo Medical Center, Tokyo, is supported by grants from Astellas Pharma Inc (NCT03281005), outside the submitted work.
Publisher Copyright:
© 2019 Yu Fujinami-Yokokawa et al.
PY - 2019
Y1 - 2019
N2 - Purpose. To illustrate a data-driven deep learning approach to predicting the gene responsible for the inherited retinal disorder (IRD) in macular dystrophy caused by ABCA4 and RP1L1 gene aberration in comparison with retinitis pigmentosa caused by EYS gene aberration and normal subjects. Methods. Seventy-five subjects with IRD or no ocular diseases have been ascertained from the database of Japan Eye Genetics Consortium; 10 ABCA4 retinopathy, 20 RP1L1 retinopathy, 28 EYS retinopathy, and 17 normal patients/subjects. Horizontal/vertical cross-sectional scans of optical coherence tomography (SD-OCT) at the central fovea were cropped/adjusted to a resolution of 400 pixels/inch with a size of 750 × 500 pix 2 for learning. Subjects were randomly split following a 3: 1 ratio into training and test sets. The commercially available learning tool, Medic mind was applied to this four-class classification program. The classification accuracy, sensitivity, and specificity were calculated during the learning process. This process was repeated four times with random assignment to training and test sets to control for selection bias. For each training/testing process, the classification accuracy was calculated per gene category. Results. A total of 178 images from 75 subjects were included in this study. The mean training accuracy was 98.5%, ranging from 90.6 to 100.0. The mean overall test accuracy was 90.9% (82.0-97.6). The mean test accuracy per gene category was 100% for ABCA4, 78.0% for RP1L1, 89.8% for EYS, and 93.4% for Normal. Test accuracy of RP1L1 and EYS was not high relative to the training accuracy which suggests overfitting. Conclusion. This study highlighted a novel application of deep neural networks in the prediction of the causative gene in IRD retinopathies from SD-OCT, with a high prediction accuracy. It is anticipated that deep neural networks will be integrated into general screening to support clinical/genetic diagnosis, as well as enrich the clinical education.
AB - Purpose. To illustrate a data-driven deep learning approach to predicting the gene responsible for the inherited retinal disorder (IRD) in macular dystrophy caused by ABCA4 and RP1L1 gene aberration in comparison with retinitis pigmentosa caused by EYS gene aberration and normal subjects. Methods. Seventy-five subjects with IRD or no ocular diseases have been ascertained from the database of Japan Eye Genetics Consortium; 10 ABCA4 retinopathy, 20 RP1L1 retinopathy, 28 EYS retinopathy, and 17 normal patients/subjects. Horizontal/vertical cross-sectional scans of optical coherence tomography (SD-OCT) at the central fovea were cropped/adjusted to a resolution of 400 pixels/inch with a size of 750 × 500 pix 2 for learning. Subjects were randomly split following a 3: 1 ratio into training and test sets. The commercially available learning tool, Medic mind was applied to this four-class classification program. The classification accuracy, sensitivity, and specificity were calculated during the learning process. This process was repeated four times with random assignment to training and test sets to control for selection bias. For each training/testing process, the classification accuracy was calculated per gene category. Results. A total of 178 images from 75 subjects were included in this study. The mean training accuracy was 98.5%, ranging from 90.6 to 100.0. The mean overall test accuracy was 90.9% (82.0-97.6). The mean test accuracy per gene category was 100% for ABCA4, 78.0% for RP1L1, 89.8% for EYS, and 93.4% for Normal. Test accuracy of RP1L1 and EYS was not high relative to the training accuracy which suggests overfitting. Conclusion. This study highlighted a novel application of deep neural networks in the prediction of the causative gene in IRD retinopathies from SD-OCT, with a high prediction accuracy. It is anticipated that deep neural networks will be integrated into general screening to support clinical/genetic diagnosis, as well as enrich the clinical education.
UR - http://www.scopus.com/inward/record.url?scp=85065647185&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85065647185&partnerID=8YFLogxK
U2 - 10.1155/2019/1691064
DO - 10.1155/2019/1691064
M3 - Article
AN - SCOPUS:85065647185
SN - 2090-004X
VL - 2019
JO - Journal of Ophthalmology
JF - Journal of Ophthalmology
M1 - 1691064
ER -