Properties of gene knockdown system by vector-based siRNA in zebrafish

Minori Shinya, Kayo Kobayashi, Aki Masuda, Mika Tokumoto, Yuichi Ozaki, Kenji Saito, Toshihiro Kawasaki, Yukiko Sado, Noriyoshi Sakai

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)


RNA interference (RNAi) has emerged as a powerful tool to silence specific genes. Vector-based RNAi systems have been developed to downregulate targeted genes in a spatially and temporally regulated fashion both in vitro and in vivo. The zebrafish (Danio rerio) is a model animal that has been examined based on a wide variety of biological techniques, including embryonic manipulations, forward and reverse genetics, and molecular biology. However, a heritable and tissue-specific knockdown of gene expression has not yet been developed in zebrafish. We examined two types of vector, which produce small interfering RNA (siRNA), the direct effector in RNAi system; microRNA (miRNA) process mimicking vectors with a promoter for RNA polymerase II and short hairpin RNA (shRNA) expressing vector through a promoter for RNA polymerase III. Though gene-silencing phenotypes were not observed in the miRNA process mimicking vectors, the transgenic embryos of the second vector (Tg(zU6-shGFP)), shRNA expressing vector for enhanced green fluorescence protein, revealed knockdown of the targeted gene. Interestingly, only the embryos from Tg(zU6-shGFP) female but not from the male fish showed the downregulation. Comparison of the quantity of siRNA produced by each vector indicates that the vectors tested here induced siRNA, but at low levels barely sufficient to silence the targeted gene.

Original languageEnglish
Pages (from-to)755-765
Number of pages11
JournalDevelopment Growth and Differentiation
Issue number9
Publication statusPublished - 2013 Dec
Externally publishedYes


  • RNAi
  • ShRNA
  • SiRNA
  • U6 snRNA promoter

ASJC Scopus subject areas

  • Developmental Biology
  • Cell Biology


Dive into the research topics of 'Properties of gene knockdown system by vector-based siRNA in zebrafish'. Together they form a unique fingerprint.

Cite this