Proto-Adapter: Efficient Training-Free CLIP-Adapter for Few-Shot Image Classification

Naoki Kato, Yoshiki Nota, Yoshimitsu Aoki

Research output: Contribution to journalArticlepeer-review

Abstract

Large vision-language models, such as Contrastive Vision-Language Pre-training (CLIP), pre-trained on large-scale image–text datasets, have demonstrated robust zero-shot transfer capabilities across various downstream tasks. To further enhance the few-shot recognition performance of CLIP, Tip-Adapter augments the CLIP model with an adapter that incorporates a key-value cache model constructed from the few-shot training set. This approach enables training-free adaptation and has shown significant improvements in few-shot recognition, especially with additional fine-tuning. However, the size of the adapter increases in proportion to the number of training samples, making it difficult to deploy in practical applications. In this paper, we propose a novel CLIP adaptation method, named Proto-Adapter, which employs a single-layer adapter of constant size regardless of the amount of training data and even outperforms Tip-Adapter. Proto-Adapter constructs the adapter’s weights based on prototype representations for each class. By aggregating the features of the training samples, it successfully reduces the size of the adapter without compromising performance. Moreover, the performance of the model can be further enhanced by fine-tuning the adapter’s weights using a distance margin penalty, which imposes additional inter-class discrepancy to the output logits. We posit that this training scheme allows us to obtain a model with a discriminative decision boundary even when trained with a limited amount of data. We demonstrate the effectiveness of the proposed method through extensive experiments of few-shot classification on diverse datasets.

Original languageEnglish
Article number3624
JournalSensors
Volume24
Issue number11
DOIs
Publication statusPublished - 2024 Jun

Keywords

  • few-shot learning
  • foundation models
  • image classification

ASJC Scopus subject areas

  • Analytical Chemistry
  • Information Systems
  • Atomic and Molecular Physics, and Optics
  • Biochemistry
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Proto-Adapter: Efficient Training-Free CLIP-Adapter for Few-Shot Image Classification'. Together they form a unique fingerprint.

Cite this