Abstract
Perovskite-type barium lithium fluoride (BaLiF3) was synthesized by pyrolysis of metal trifluoroacetates. The reaction temperature necessary for producing a single-phase material was found to be 600°C, which was lower than that for a conventional solid-state reaction or a melting method. Eu-doped BaLiF3 was also prepared and characterized to examine the suitability of trifluoroacetates for precursors in synthesizing homogeneous complex metal fluoride materials. It was demonstrated that trivalent Eu3+, which was used as acetate for a starting material, was reduced to divalent Eu2+ in the pyrolysis process of BaLiF 3, as indicated by a broad blue emission due to an allowed 4f 65d→4f7 transition at 408nm with a ultraviolet excitation at 254nm. The concentration quenching of the blue emission occurred at 5at% of Eu in BaLiF3, indicating that Eu was homogeneously dispersed in the BaLiF3 host lattice. Mechanisms of the formation and reduction process of BaLiF3 were discussed based on pertinent chemical reactions.
Original language | English |
---|---|
Pages (from-to) | 1032-1036 |
Number of pages | 5 |
Journal | Journal of Solid State Chemistry |
Volume | 177 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2004 Mar |
Keywords
- Barium lithium fluoride
- Decomposition
- Photoluminescence
- Reduction
- Trifluoroacetates
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Condensed Matter Physics
- Physical and Theoretical Chemistry
- Inorganic Chemistry
- Materials Chemistry