TY - JOUR
T1 - Rapidly Increasing Prevalence of β-Lactamase-Nonproducing, Ampicillin-Resistant Haemophilus influenzae Type b in Patients with Meningitis
AU - Hasegawa, Keiko
AU - Chiba, Naoko
AU - Kobayashi, Reiko
AU - Murayama, Somay Y.
AU - Iwata, Satoshi
AU - Sunakawa, Keisuke
AU - Ubukata, Kimiko
PY - 2004/5
Y1 - 2004/5
N2 - A total of 395 Haemophilus influenzae strains from 226 Japanese institutions participating in the Nationwide Surveillance Study Group for Bacterial Meningitis were received from 1999 to 2002. All strains were analyzed by PCR to identify the resistance genes, and their susceptibilities to β-lactam agents were determined. Of these strains, 29.1% were β-lactamase nonproducing and ampicillin (AMP) susceptible (BLNAS) and lacked all resistance genes; 15.4% were β-lactamase producing and AMP resistant and had the blaTEM-1 gene; 30.6% were β-lactamase nonproducing and AMP resistant (low-BLNAR) and had a Lys-526 or His-517 amino acid substitution in ftsI encoding PBP 3; 13.9% were β-lactamase nonproducing and AMP resistant (BLNAR) and had an additional substitution of Thr-385 in ftsI; 9.1% were amoxicillin-clavulanic acid resistant (BLPACR I) and had the blaTEM-1 gene and a Lys-526 or His-517 amino acid substitution in ftsI; and 1.8% showed resistance similar to that of the BLPACR I group (BLPACR II) but had blaTEM-1 gene and ftsI substitutions, as was the case for the BLNAR strains. All but three strains were serotype b. The prevalence of BLNAR strains has increased rapidly: 0% in 1999, 5.8% in 2000, 14.1% in 2001, and 21.3% in 2002. The MICs at which 90% of BLNAR isolates were inhibited were as follows: AMP, 16 μg/ml; cefotaxime, 1 μg/ml; ceftriaxone, 0.25 μg/ml; and meropenem, 0.5 μg/ml. All of these values were higher than those for the BLNAS counterpart strains. The relatively wide distributions of the β-lactam MICs for BLNAR strains presumably reflect variations in ftsI gene mutations. Pulsed-field gel electrophoresis suggested the rapid spread of specific H. influenzae type b strains throughout Japan. Expedited vaccination, rapid identification, and judicious antibiotic use could slow their spread.
AB - A total of 395 Haemophilus influenzae strains from 226 Japanese institutions participating in the Nationwide Surveillance Study Group for Bacterial Meningitis were received from 1999 to 2002. All strains were analyzed by PCR to identify the resistance genes, and their susceptibilities to β-lactam agents were determined. Of these strains, 29.1% were β-lactamase nonproducing and ampicillin (AMP) susceptible (BLNAS) and lacked all resistance genes; 15.4% were β-lactamase producing and AMP resistant and had the blaTEM-1 gene; 30.6% were β-lactamase nonproducing and AMP resistant (low-BLNAR) and had a Lys-526 or His-517 amino acid substitution in ftsI encoding PBP 3; 13.9% were β-lactamase nonproducing and AMP resistant (BLNAR) and had an additional substitution of Thr-385 in ftsI; 9.1% were amoxicillin-clavulanic acid resistant (BLPACR I) and had the blaTEM-1 gene and a Lys-526 or His-517 amino acid substitution in ftsI; and 1.8% showed resistance similar to that of the BLPACR I group (BLPACR II) but had blaTEM-1 gene and ftsI substitutions, as was the case for the BLNAR strains. All but three strains were serotype b. The prevalence of BLNAR strains has increased rapidly: 0% in 1999, 5.8% in 2000, 14.1% in 2001, and 21.3% in 2002. The MICs at which 90% of BLNAR isolates were inhibited were as follows: AMP, 16 μg/ml; cefotaxime, 1 μg/ml; ceftriaxone, 0.25 μg/ml; and meropenem, 0.5 μg/ml. All of these values were higher than those for the BLNAS counterpart strains. The relatively wide distributions of the β-lactam MICs for BLNAR strains presumably reflect variations in ftsI gene mutations. Pulsed-field gel electrophoresis suggested the rapid spread of specific H. influenzae type b strains throughout Japan. Expedited vaccination, rapid identification, and judicious antibiotic use could slow their spread.
UR - http://www.scopus.com/inward/record.url?scp=2142767352&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=2142767352&partnerID=8YFLogxK
U2 - 10.1128/AAC.48.5.1509-1514.2004
DO - 10.1128/AAC.48.5.1509-1514.2004
M3 - Article
C2 - 15105098
AN - SCOPUS:2142767352
SN - 0066-4804
VL - 48
SP - 1509
EP - 1514
JO - Antimicrobial Agents and Chemotherapy
JF - Antimicrobial Agents and Chemotherapy
IS - 5
ER -