Reciprocal sums of Fibonacci numbers

Carsten Eisner, Shun Shimomura, Iekata Shiokawa

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We discuss algebraic independence and algebraic relations for various series of reciprocal sums of Fibonacci numbers.

Original languageEnglish
Title of host publicationDiophantine Analysis and Related Fields, DARF 2007/2008
Pages77-89
Number of pages13
DOIs
Publication statusPublished - 2008
EventDiophantine Analysis and Related Fields, DARF 2007/2008 - Kyoto, Japan
Duration: 2008 Mar 52008 Mar 7

Publication series

NameAIP Conference Proceedings
Volume976
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Other

OtherDiophantine Analysis and Related Fields, DARF 2007/2008
Country/TerritoryJapan
CityKyoto
Period08/3/508/3/7

Keywords

  • Fibonacci numbers
  • Nesterenko's theorem
  • Ramanujan function

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Reciprocal sums of Fibonacci numbers'. Together they form a unique fingerprint.

Cite this