Regeneration of the central nervous system using iPS cell-technologies

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


Induced pluripotent stem (iPS) cells are pluripotent stem cells directly reprogrammed from cultured mouse fibroblast by introducing Oct3/4, Sox2, c-Myc, and Klf4. Cells obtained using this technology, which allows the ethical issues and immunological rejection associated with embryonic stem (ES) cells to be avoided, might be a clinically useful source for cell replacement therapies. We found that secondary neurospheres (SNSs) generated from various mouse iPS cell showed their neural differentiation capacity and teratoma formation after transplantation into the brain of immunodeficient NOD/SCID mice. We found that origin (source of somatic cells) of the iPS cells are the crucial determinant for the potential tumorigenicity of iPS-derived neural stem/progenitor cells and that their tumorigenicity results from the persistent presence of undifferentiated cells within the SNSs. Surprisingly, SNSs derived from c-Myc minusiPS cells generated without drug selection showed robust tumorigenesis, in spite of their potential to contribute adult chimeric mice without tumor formation. Furthermore, we examined whether the transplantation of non-tumorigenic Nanog-iPS-derived SNSs into mouse spinal cord injury (SCI) model could promote locomotor function recovery. As a result, we found that properly pre-evaluated iPS clone-derived neural stem/progenitor cells may be a promising cell source for future transplantation therapy of SCI.

Original languageEnglish
Pages (from-to)825-826
Number of pages2
JournalClinical Neurology
Issue number11
Publication statusPublished - 2009


  • Embryonic stem cells (ES cells)
  • Induced pluripotent stem cells (iPS cells)
  • Neural stem cells
  • Spinal cord injury
  • Tumorigenicity

ASJC Scopus subject areas

  • Clinical Neurology


Dive into the research topics of 'Regeneration of the central nervous system using iPS cell-technologies'. Together they form a unique fingerprint.

Cite this