Reinvestigation of the rotation effect in solid He 4 with a rigid torsional oscillator

J. Choi, T. Tsuiki, D. Takahashi, H. Choi, K. Kono, K. Shirahama, E. Kim

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


We reexamined the rotation-induced effect observed in solid He4 by using a rigid two-frequency torsional oscillator (TO). The previous rotation experiments reported the rotation-induced suppression of the "nonclassical" TO response that was interpreted as evidence of irrotational bulk superfluidity in solid He4. However, the experiment employed a nonrigid TO that could amplify the elastic contribution in the TO response. Thus, it is important to clarify if the rotation-induced suppression of the TO response could be attributed to an unavoidable elastic effect. In our rigid TO, complicated nonlinear viscoelastic contributions are systematically eliminated. In addition, the TO operating at two different resonant frequencies allows us to decompose a possible superfluidlike frequency-independent contribution on period drop from that of the linear elastic overshoot effect. We found no substantial rotation-induced effect in the out-of-phase resonant mode unlike that found in the previous rotation experiments. It indicates that the previous rotation effect in the nonrigid TO cannot be attributed to the genuine supersolidity. According to the frequency analysis of the TO response, the frequency-dependent period drop, which can be attributed to the elastic overshoot effect, remains unaffected upon application of dc rotation. However, the frequency-independent superfluidlike contribution exhibits a strikingly different rotation effect that is currently inexplicable.

Original languageEnglish
Article number014509
JournalPhysical Review B
Issue number1
Publication statusPublished - 2018 Jul 13

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics


Dive into the research topics of 'Reinvestigation of the rotation effect in solid He 4 with a rigid torsional oscillator'. Together they form a unique fingerprint.

Cite this