Relaxation of the Spin Autocorrelation Function in the Kinetic Ising Model with Bond Dilution

Hiroshi Takano, Seiji Miyashita

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)


The relaxation of the equilibrium correlation function [formula omitted] is studied by the Monte Carlo method for the bond-diluted kinetic Ising model on the square lattice with a bond concentration below the percolation threshold. Here, the system has N Ising spins and Si denotes the i-th Ising spin. The correlation function q(t) seems to exhibit a nonexponential decay below the critical temperature of the nonrandom Ising model. An effective size v of a cluster of ferromagnetically connected spins is defined as [formula omitted], where τ is the longest relaxation time in the cluster. It is found that the distribution function of v behaves as [formula omitted]. Although the asymptotic behaviour [formula omitted] is not reached in the time region studied by the Monte Carlo method, this distribution explains the long-time behavior of q(t).

Original languageEnglish
Pages (from-to)3871-3874
Number of pages4
JournalJournal of the Physical Society of Japan
Issue number11
Publication statusPublished - 1989 Jan 1


  • Bond dilution
  • Griffiths singularity
  • Kinetic Ising model
  • Relaxation
  • Spin autocorrelation function

ASJC Scopus subject areas

  • General Physics and Astronomy


Dive into the research topics of 'Relaxation of the Spin Autocorrelation Function in the Kinetic Ising Model with Bond Dilution'. Together they form a unique fingerprint.

Cite this