Robust effects of Tsr-CheBp and CheA-CheYp affinity in bacterial chemotaxis

Yuri Matsuzaki, Shinichi Kikuchi, Masaru Tomita

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


Objective: Cell motility and chemotaxis play a role in the virulence of pathogenic bacteria, such as escape from host immune responses. Escherichia coli chemotaxis provides a well-characterized model system for the bacterial chemotaxis network. Two features of E. coli chemotaxis include signal amplification and robustly accurate adaptation. Recent simulation studies with models considering the effects of other receptors have suggested possible mechanisms for signal amplification. Although precise adaptation to aspartate has been explained by conventional kinetic models, the adaptation behavior of models incorporating the effects of other receptors remains unclear. Methods: We concentrated on how receptor crosstalk affects minimization of adaptation error and compared models in which the contribution of other receptors varied. Results: We demonstrated that the model is adaptable to attractant concentrations ranging from 0.1μ M to 10 mM with a decreased error rate (from 8% to 2%) when the kinetic constant of CheA and phosphorylated CheY dissociation is increased. Conclusion: The results suggest that accurate adaptation is maintained through control of both the interaction of cytoplasmic Che proteins and the activity of the receptor complex.

Original languageEnglish
Pages (from-to)145-150
Number of pages6
JournalArtificial Intelligence in Medicine
Issue number2
Publication statusPublished - 2007 Oct


  • Bacterial chemotaxis
  • Kinetic simulation
  • Parameter perturbation analysis

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Artificial Intelligence


Dive into the research topics of 'Robust effects of Tsr-CheBp and CheA-CheYp affinity in bacterial chemotaxis'. Together they form a unique fingerprint.

Cite this