TY - GEN
T1 - Scaling bilateral controls with impedance transmission using transfer admittance
AU - Mizoguchi, Takahiro
AU - Nozaki, Takahiro
AU - Ohnishi, Kouhei
PY - 2012/6/4
Y1 - 2012/6/4
N2 - Scaling bilateral control is a method to extend human ability by using master and slave robots. Position scaling extends working space of human; force scaling extends sensitivity of human. This technology is useful when the slave robot is larger in size compared with the master robot. In general, correct environmental impedance, such as softness or hardness of the object, cannot be transmitted in scaling bilateral control due to a mismatch of force scaling and position scaling in the bilateral control. However, correct environmental impedance is necessary for the safe operation, especially in the scaling bilateral control where the mass of robot tends to become large. This paper proposes a method of transmitting environmental impedance in position scaling bilateral control. Position scaling is focused for the sake of extending working space of operator when the slave robot has larger working space compared with the master robot. There exist two methods to scale position in bilateral control; scaling with constant coefficient and scaling with dimension variation. Conventionally, neither of these achieves correct impedance transmission. Proposed method can be applied to both position scaling methods with the same procedure and achieves impedance transmission by using property of gyrator type bilateral control. The transfer admittance has an ability to bring back the scaled bilateral control to non scaled bilateral control during contact motion. The effect of the proposal is verified through simulation and experiment.
AB - Scaling bilateral control is a method to extend human ability by using master and slave robots. Position scaling extends working space of human; force scaling extends sensitivity of human. This technology is useful when the slave robot is larger in size compared with the master robot. In general, correct environmental impedance, such as softness or hardness of the object, cannot be transmitted in scaling bilateral control due to a mismatch of force scaling and position scaling in the bilateral control. However, correct environmental impedance is necessary for the safe operation, especially in the scaling bilateral control where the mass of robot tends to become large. This paper proposes a method of transmitting environmental impedance in position scaling bilateral control. Position scaling is focused for the sake of extending working space of operator when the slave robot has larger working space compared with the master robot. There exist two methods to scale position in bilateral control; scaling with constant coefficient and scaling with dimension variation. Conventionally, neither of these achieves correct impedance transmission. Proposed method can be applied to both position scaling methods with the same procedure and achieves impedance transmission by using property of gyrator type bilateral control. The transfer admittance has an ability to bring back the scaled bilateral control to non scaled bilateral control during contact motion. The effect of the proposal is verified through simulation and experiment.
UR - http://www.scopus.com/inward/record.url?scp=84861637780&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84861637780&partnerID=8YFLogxK
U2 - 10.1109/AMC.2012.6197044
DO - 10.1109/AMC.2012.6197044
M3 - Conference contribution
AN - SCOPUS:84861637780
SN - 9781457710711
T3 - International Workshop on Advanced Motion Control, AMC
BT - Abstracts - 2012 12th IEEE International Workshop on Advanced Motion Control, AMC 2012
T2 - 2012 12th IEEE International Workshop on Advanced Motion Control, AMC 2012
Y2 - 25 March 2012 through 27 March 2012
ER -