Simultaneous measurement of temperature and velocity maps by inversion recovery tagging method

Kuniyasu Ogawa, Makoto Tobo, Norio Iriguchi, Shuichiro Hirai, Ken Okazaki

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

A new method, called the inversion recovery (IR) tagging method, for simultaneous measurement of temperature and velocity maps of flowing fluid has been developed. The present method employs a set of tagging pulses which acts as an inversion pulse of the conventional IR method, based on the temperature dependence of the spin-lattice relaxation of water proton in a fluid, and has the advantage of being able to compensate the reduction of the NMR signal intensity due to flow motion and to reduce the total time to measure these maps. First, the accuracy of the temperature measurement of stagnant doped water in a differentially heated cell using the conventional IR method, as the basic sequence of the IR tagging method, has been evaluated. The accuracy was within 10% of the temperature difference ΔT = 17.2°C and the measurable temperature resolution was within ±0.5°C. Then temperature and velocity maps of the flowing doped-water through a cooled pipe were measured simultaneously by the IR tagging method, and the accuracy of temperature measurement was evaluated. The accuracy obtained using the present method was within 15% of the temperature difference ΔT = 15°C. (C) 2000 Elsevier Science Inc.

Original languageEnglish
Pages (from-to)209-216
Number of pages8
JournalMagnetic Resonance Imaging
Volume18
Issue number2
DOIs
Publication statusPublished - 2000 Feb 1
Externally publishedYes

Keywords

  • Flow visualization
  • T relaxation time
  • Temperature measurement

ASJC Scopus subject areas

  • Biophysics
  • Biomedical Engineering
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Simultaneous measurement of temperature and velocity maps by inversion recovery tagging method'. Together they form a unique fingerprint.

Cite this