Sr and Zr diffusion in LSCF/10GDC/8YSZ triplets for solid oxide fuel cells (SOFCs)

Fangfang Wang, Mina Nishi, Manuel E. Brito, Haruo Kishimoto, Katsuhiko Yamaji, Harumi Yokokawa, Teruhisa Horita

Research output: Contribution to journalArticlepeer-review

124 Citations (Scopus)

Abstract

In this work we attempt to give solution to apparently inconsistent results on grain boundary diffusion of Sr in 10GDC that we have found in our earlier diffusion experiments. The emphasis is placed on using of diffusion triplets: LSCF(porous)/10GDC(dense)/8YSZ(dense) that reproduce the driving forces for Sr diffusion found in solid oxide fuel cell (SOFC) real systems. The diffusion triplets were annealed at 1100 and 1200 C for one week. Detailed analyses of the microstructure and elemental distributions unequivocally demonstrate the SrZrO3 formation along both the LSCF/10GDC and the 10GDC/8YSZ interfaces as the result of strontium and zirconium counter directional grain boundary diffusion through the 10GDC interlayer. Furthermore, micro-cracks in the 10GDC interlayer, formed during pre-annealing of the 10GDC/8YSZ layers, were also found to contribute to the SrZrO3 formation via surface diffusion. Thermodynamic considerations taking in account these microstructural features successfully explain, in terms of the chemical potential gradients developed across the 10GDC layer, why SrZrO3 is formed along both interfaces when grain boundary diffusion, or surface diffusion (along crack walls), become dominant compared to bulk diffusion through the 10GDC.

Original languageEnglish
Pages (from-to)281-289
Number of pages9
JournalJournal of Power Sources
Volume258
DOIs
Publication statusPublished - 2014 Jul 15

Keywords

  • 10GDC interlayer
  • Diffusion
  • SOFC
  • SrZrO
  • Strontium
  • Zirconium

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Physical and Theoretical Chemistry
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Sr and Zr diffusion in LSCF/10GDC/8YSZ triplets for solid oxide fuel cells (SOFCs)'. Together they form a unique fingerprint.

Cite this