TY - JOUR
T1 - SS18-SSX-regulated miR-17 promotes tumor growth of synovial sarcoma by inhibiting p21WAF1/CIP1.
AU - Minami, Yusuke
AU - Kohsaka, Shinji
AU - Tsuda, Masumi
AU - Yachi, Kazuhiro
AU - Hatori, Nobuaki
AU - Tanino, Mishie
AU - Kimura, Taichi
AU - Nishihara, Hiroshi
AU - Minami, Akio
AU - Iwasaki, Norimasa
AU - Tanaka, Shinya
PY - 2014
Y1 - 2014
N2 - MicroRNA (miRNA) can function as tumor suppressors or oncogenes, and also as potential specific cancer biomarkers; however, there are few published studies on miRNA in synovial sarcomas, and their function remains unclear. We transfected the OncomiR miRNA Precursor Virus Library into synovial sarcoma Fuji cells followed by a colony formation assay to identify miRNAs to confer an aggressive tumorigenicity, and identified miR-17-5p from the large colonies. MiR-17 was found to be induced by a chimeric oncoprotein SS18-SSX specific for synovial sarcoma, and all examined cases of human synovial sarcoma expressed miR-17, even at high levels in several cases. Overexpression of miR-17 in synovial sarcoma cells, Fuji and HS-SYII, increased colony forming ability in addition to cell growth, but not cell motility and invasion. Tumor volume formed in mice in vivo was significantly increased by miR-17 overexpression with a marked increase of MIB-1 index. According to PicTar and Miranda algorithms, which predicted CDKN1A (p21) as a putative target of miR-17, a luciferase assay was performed and revealed that miR-17 directly targets the 3'-UTR of p21 mRNA. Indeed, p21 protein level was remarkably decreased by miR-17 overexpression in a p53-independent manner. It is noteworthy that miR-17 succeeded in suppressing doxorubicin-evoked higher expression of p21 and conferred the drug resistance. Meanwhile, introduction of anti-miR-17 in Fuji and HS-SYII cells significantly decreased cell growth, consistent with rescued expression of p21. Taken together, miR-17 promotes the tumor growth of synovial sarcomas by post-transcriptional suppression of p21, which may be amenable to innovative therapeutic targeting in synovial sarcoma.
AB - MicroRNA (miRNA) can function as tumor suppressors or oncogenes, and also as potential specific cancer biomarkers; however, there are few published studies on miRNA in synovial sarcomas, and their function remains unclear. We transfected the OncomiR miRNA Precursor Virus Library into synovial sarcoma Fuji cells followed by a colony formation assay to identify miRNAs to confer an aggressive tumorigenicity, and identified miR-17-5p from the large colonies. MiR-17 was found to be induced by a chimeric oncoprotein SS18-SSX specific for synovial sarcoma, and all examined cases of human synovial sarcoma expressed miR-17, even at high levels in several cases. Overexpression of miR-17 in synovial sarcoma cells, Fuji and HS-SYII, increased colony forming ability in addition to cell growth, but not cell motility and invasion. Tumor volume formed in mice in vivo was significantly increased by miR-17 overexpression with a marked increase of MIB-1 index. According to PicTar and Miranda algorithms, which predicted CDKN1A (p21) as a putative target of miR-17, a luciferase assay was performed and revealed that miR-17 directly targets the 3'-UTR of p21 mRNA. Indeed, p21 protein level was remarkably decreased by miR-17 overexpression in a p53-independent manner. It is noteworthy that miR-17 succeeded in suppressing doxorubicin-evoked higher expression of p21 and conferred the drug resistance. Meanwhile, introduction of anti-miR-17 in Fuji and HS-SYII cells significantly decreased cell growth, consistent with rescued expression of p21. Taken together, miR-17 promotes the tumor growth of synovial sarcomas by post-transcriptional suppression of p21, which may be amenable to innovative therapeutic targeting in synovial sarcoma.
UR - http://www.scopus.com/inward/record.url?scp=85027929100&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85027929100&partnerID=8YFLogxK
U2 - 10.1111/cas.12479
DO - 10.1111/cas.12479
M3 - Article
C2 - 24989082
AN - SCOPUS:85027929100
SN - 1347-9032
VL - 105
SP - 1152
EP - 1159
JO - Cancer science
JF - Cancer science
IS - 9
ER -